The one phonon Raman spectrum of silicon nanostructures

P. Alfaro, M. Cruz, Chumin Wang
{"title":"The one phonon Raman spectrum of silicon nanostructures","authors":"P. Alfaro, M. Cruz, Chumin Wang","doi":"10.1109/NANOEL.2006.1609770","DOIUrl":null,"url":null,"abstract":"Porous silicon is a structurally complex material, in which effects of the pore topology on its physical properties are even controversial. In this work, we use the Born potential and the Green’s function, both applied to a supercell model, in order to analyze the Raman response and the phonon band structure of porous silicon. In this model the pores are simulated by empty columns of atoms, in direction [ 001], produced in a crystalline silicon structure. A consequence of the model is the interconnection between silicon nanocrystals, and then, all the states are extended. However, the results show a behavior similar to the quantum confinement. Moreover, a dependence of the Raman spectra with the pore topology is observed. Finally, a shift of the main Raman peak towards lower frequencies is found, in agreement with experimental data.","PeriodicalId":220722,"journal":{"name":"2006 IEEE Conference on Emerging Technologies - Nanoelectronics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Emerging Technologies - Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOEL.2006.1609770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Porous silicon is a structurally complex material, in which effects of the pore topology on its physical properties are even controversial. In this work, we use the Born potential and the Green’s function, both applied to a supercell model, in order to analyze the Raman response and the phonon band structure of porous silicon. In this model the pores are simulated by empty columns of atoms, in direction [ 001], produced in a crystalline silicon structure. A consequence of the model is the interconnection between silicon nanocrystals, and then, all the states are extended. However, the results show a behavior similar to the quantum confinement. Moreover, a dependence of the Raman spectra with the pore topology is observed. Finally, a shift of the main Raman peak towards lower frequencies is found, in agreement with experimental data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅纳米结构的单声子拉曼光谱
多孔硅是一种结构复杂的材料,其孔隙拓扑结构对其物理性质的影响一直存在争议。在这项工作中,我们使用了Born势和Green函数,两者都适用于超级单体模型,以分析多孔硅的拉曼响应和声子带结构。在这个模型中,孔隙是由晶体硅结构中产生的方向[001]的空原子柱来模拟的。该模型的一个结果是硅纳米晶体之间的互连,然后,所有的状态都扩展了。然而,结果显示出类似于量子约束的行为。此外,还观察到拉曼光谱与孔隙拓扑结构的相关性。最后,发现主拉曼峰向低频偏移,与实验数据一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nanostructuring surfaces with slow multiply-charged ions Programming Efficiency of Stacked-Gate Flash Memories with High-κ Dielectrics Identification and rapid screen based on immune sensor Nanotube based Vertical Nano-devices for High Integration Density Investigation of Nano-Scale Single Crystal Silicon Using the Atomistic-Continuum Mechanics with Stillinger-Weber Potential Function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1