SRQM: A Video Quality Metric for Spatial Resolution Adaptation

Alex Mackin, Mariana Afonso, Fan Zhang, D. Bull
{"title":"SRQM: A Video Quality Metric for Spatial Resolution Adaptation","authors":"Alex Mackin, Mariana Afonso, Fan Zhang, D. Bull","doi":"10.1109/PCS.2018.8456246","DOIUrl":null,"url":null,"abstract":"This paper presents a full reference objective video quality metric (SRQM), which characterises the relationship between variations in spatial resolution and visual quality in the context of adaptive video formats. SRQM uses wavelet decomposition, subband combination with perceptually inspired weights, and spatial pooling, to estimate the relative quality between the frames of a high resolution reference video, and one that has been spatially adapted through a combination of down and upsampling. The uVI-SR video database is used to benchmark SRQM against five commonly-used quality metrics. The database contains 24 diverse video sequences that span a range of spatial resolutions up to UHD-I $(3840\\times 2160)$. An in- depth analysis demonstrates that SRQM is statistically superior to the other quality metrics for all tested adaptation filters, and all with relatively low computational complexity.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a full reference objective video quality metric (SRQM), which characterises the relationship between variations in spatial resolution and visual quality in the context of adaptive video formats. SRQM uses wavelet decomposition, subband combination with perceptually inspired weights, and spatial pooling, to estimate the relative quality between the frames of a high resolution reference video, and one that has been spatially adapted through a combination of down and upsampling. The uVI-SR video database is used to benchmark SRQM against five commonly-used quality metrics. The database contains 24 diverse video sequences that span a range of spatial resolutions up to UHD-I $(3840\times 2160)$. An in- depth analysis demonstrates that SRQM is statistically superior to the other quality metrics for all tested adaptation filters, and all with relatively low computational complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SRQM:一种空间分辨率适应的视频质量度量
本文提出了一个完整的参考客观视频质量度量(SRQM),它表征了自适应视频格式下空间分辨率变化与视觉质量之间的关系。SRQM使用小波分解、带有感知启发权重的子带组合和空间池化来估计高分辨率参考视频帧与通过上下采样组合进行空间调整的视频帧之间的相对质量。uVI-SR视频数据库用于根据五种常用的质量指标对SRQM进行基准测试。该数据库包含24种不同的视频序列,其空间分辨率可达UHD-I $(3840\ × 2160)$。一项深入的分析表明,SRQM在统计上优于所有测试过的自适应滤波器的其他质量度量,并且都具有相对较低的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future Video Coding Technologies: A Performance Evaluation of AV1, JEM, VP9, and HM Joint Optimization of Rate, Distortion, and Maximum Absolute Error for Compression of Medical Volumes Using HEVC Intra Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme Detecting Source Video Artifacts with Supervised Sparse Filters Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1