A Novel Hybrid Analog Design Optimizer with Particle Swarm Optimization and modern Deep Neural Networks

Ahmed Elsiginy, M. Elmahdy, E. Azab
{"title":"A Novel Hybrid Analog Design Optimizer with Particle Swarm Optimization and modern Deep Neural Networks","authors":"Ahmed Elsiginy, M. Elmahdy, E. Azab","doi":"10.1109/ISOCC47750.2019.9027647","DOIUrl":null,"url":null,"abstract":"This work presents a novel hybrid optimization technique that combines a Particle Swarm Optimization (PSO) engine with a multi-output Deep Neural Network (DNN) to obtain a fast and accurate analog circuit optimizer. A Deep Learning supervised regression model is used to replace the slow simulations required in the standard PSO. A CMOS miller-opamp is used as the design problem. Using the hybrid PSO-DNN technique has combined the speed of the DNN model and the accuracy of the PSO. Moreover, Deep Learning modeling has improved the accuracy compared to the standard machine learning techniques.","PeriodicalId":113802,"journal":{"name":"2019 International SoC Design Conference (ISOCC)","volume":"322 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC47750.2019.9027647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work presents a novel hybrid optimization technique that combines a Particle Swarm Optimization (PSO) engine with a multi-output Deep Neural Network (DNN) to obtain a fast and accurate analog circuit optimizer. A Deep Learning supervised regression model is used to replace the slow simulations required in the standard PSO. A CMOS miller-opamp is used as the design problem. Using the hybrid PSO-DNN technique has combined the speed of the DNN model and the accuracy of the PSO. Moreover, Deep Learning modeling has improved the accuracy compared to the standard machine learning techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群优化和现代深度神经网络的新型混合模拟设计优化器
本文提出了一种新的混合优化技术,将粒子群优化(PSO)引擎与多输出深度神经网络(DNN)相结合,以获得快速准确的模拟电路优化器。使用深度学习监督回归模型来取代标准粒子群算法中需要的慢速模拟。采用CMOS米勒放大器作为设计问题。采用混合粒子群-深度神经网络技术,将深度神经网络模型的速度和粒子群的精度结合起来。此外,与标准机器学习技术相比,深度学习建模提高了准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-carrier Signal Detection using Convolutional Neural Networks An RRAM-based Analog Neuron Design for the Weighted Spiking Neural network NTX: A 260 Gflop/sW Streaming Accelerator for Oblivious Floating-Point Algorithms in 22 nm FD-SOI A Low-Power 20 Gbps Multi-phase MDLL-based Digital CDR with Receiver Equalization Scaling Bit-Flexible Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1