Surface code design for asymmetric error channels

IF 2.5 Q3 QUANTUM SCIENCE & TECHNOLOGY IET Quantum Communication Pub Date : 2022-05-25 DOI:10.1049/qtc2.12042
Utkarsh Azad, Aleksandra Lipińska, Shilpa Mahato, Rijul Sachdeva, Debasmita Bhoumik, Ritajit Majumdar
{"title":"Surface code design for asymmetric error channels","authors":"Utkarsh Azad,&nbsp;Aleksandra Lipińska,&nbsp;Shilpa Mahato,&nbsp;Rijul Sachdeva,&nbsp;Debasmita Bhoumik,&nbsp;Ritajit Majumdar","doi":"10.1049/qtc2.12042","DOIUrl":null,"url":null,"abstract":"<p>Surface codes are quantum error correcting codes typically defined on a 2D array of qubits. A [<i>d</i><sub><i>x</i></sub>, <i>d</i><sub><i>z</i></sub>] surface code design is being introduced, where <i>d</i><sub><i>x</i></sub>(<i>d</i><sub><i>z</i></sub>) represents the distance of the code for bit (phase) error correction, motivated by the fact that the severity of bit flip and phase flip errors in the physical quantum system is asymmetric. We present pseudo-threshold and threshold values for the proposed surface code design for asymmetric error channels in the presence of various degrees of asymmetry of <math>\n <semantics>\n <mrow>\n <mtext>Pauli</mtext>\n <mrow>\n <mspace></mspace>\n <mover>\n <mi>X</mi>\n <mo>^</mo>\n </mover>\n <mo>,</mo>\n <mspace></mspace>\n <mrow>\n <mover>\n <mi>Y</mi>\n <mo>^</mo>\n </mover>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\text{Pauli}\\,\\hat{X},\\,\\hat{Y}$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mtext>and</mtext>\n <mrow>\n <mspace></mspace>\n <mover>\n <mi>Z</mi>\n <mo>^</mo>\n </mover>\n </mrow>\n </mrow>\n <annotation> $\\text{and}\\,\\hat{Z}$</annotation>\n </semantics></math> errors in a depolarisation channel. We demonstrate that compared to symmetric surface codes, our asymmetric surface codes can provide almost double the pseudo-threshold rates while requiring less than half the number of physical qubits in the presence of increasing asymmetry in the error channel. Our results show that for low degree of asymmetry, it is advantageous to increase <i>d</i><sub><i>x</i></sub> along with <i>d</i><sub><i>z</i></sub>. However, as the asymmetry of the channel increases, higher pseudo-threshold is obtained with increasing <i>d</i><sub><i>z</i></sub> when <i>d</i><sub><i>x</i></sub> is kept constant at a low value. Additionally, we also show that the advantage in the pseudo-threshold rates begins to saturate for any possible degree of asymmetry in the error channel as the surface code asymmetry is continued to be increased.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"3 3","pages":"174-183"},"PeriodicalIF":2.5000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12042","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Surface codes are quantum error correcting codes typically defined on a 2D array of qubits. A [dx, dz] surface code design is being introduced, where dx(dz) represents the distance of the code for bit (phase) error correction, motivated by the fact that the severity of bit flip and phase flip errors in the physical quantum system is asymmetric. We present pseudo-threshold and threshold values for the proposed surface code design for asymmetric error channels in the presence of various degrees of asymmetry of Pauli X ^ , Y ^ $\text{Pauli}\,\hat{X},\,\hat{Y}$ , and Z ^ $\text{and}\,\hat{Z}$ errors in a depolarisation channel. We demonstrate that compared to symmetric surface codes, our asymmetric surface codes can provide almost double the pseudo-threshold rates while requiring less than half the number of physical qubits in the presence of increasing asymmetry in the error channel. Our results show that for low degree of asymmetry, it is advantageous to increase dx along with dz. However, as the asymmetry of the channel increases, higher pseudo-threshold is obtained with increasing dz when dx is kept constant at a low value. Additionally, we also show that the advantage in the pseudo-threshold rates begins to saturate for any possible degree of asymmetry in the error channel as the surface code asymmetry is continued to be increased.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非对称误差信道的表面码设计
表面码是量子纠错码,通常定义在二维量子比特阵列上。引入了一种[dx, dz]表面码设计,其中dx(dz)表示比特(相位)纠错码的距离,其动机是物理量子系统中比特翻转和相位翻转错误的严重程度是不对称的。在Pauli X ^存在不同程度的不对称性的情况下,我们给出了所提出的非对称误差通道表面编码设计的伪阈值和阈值。Y ^ $\text{Pauli}\,\hat{X},\,\hat{Y}$,和Z ^ $\text{和}\,\ {Z}$在去极化通道中的错误。我们证明,与对称表面码相比,我们的非对称表面码可以提供几乎两倍的伪阈值率,而在错误通道中存在不断增加的不对称性的情况下,所需的物理量子比特数量不到一半。结果表明,对于不对称程度较低的情况,随dz的增大而增大dx是有利的。然而,随着通道不对称性的增加,当dx保持在一个较低的值时,随着dz的增加,伪阈值也会增加。此外,我们还表明,随着表面码不对称继续增加,伪阈值率的优势在错误通道中任何可能的不对称程度开始饱和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
期刊最新文献
Routing in quantum networks with end-to-end knowledge Beamforming optimization via quantum algorithms using Variational Quantum Eigensolver and Quantum Approximate Optimization Algorithm Quantum teleportation in higher dimension and entanglement distribution via quantum switches Real-time seedless post-processing for quantum random number generators Quantum blockchain: Trends, technologies, and future directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1