Simulation based particle swarm optimization of cross-training policies in spare parts supply systems

A. Sleptchenko, T. Elmekkawy, H. Turan, S. Pokharel
{"title":"Simulation based particle swarm optimization of cross-training policies in spare parts supply systems","authors":"A. Sleptchenko, T. Elmekkawy, H. Turan, S. Pokharel","doi":"10.1109/ICACI.2017.7974486","DOIUrl":null,"url":null,"abstract":"We study a single location supply system for repairable spare parts. The system consists of a multi-server repair shop and inventory with ready-to-use spare parts. When a failed part is received, a new (or as-good-as-new) replacement part is sent back, and the failed part is forwarded to the repairshop. In the case of unavailability of spare parts, failed requests are backordered and fulfilled when a ready-for-use part of the same type is received from the repairshop. The repair shop has several multi-skilled parallel servers (technicians) that are capable of handling certain types of spares. In this paper, we propose a Particle Swarm Optimization heuristic combined with Discrete-Event Simulation for optimizing the cross-training policy (skill assignment scheme) while minimizing the total system cost (consisting of inventory costs, backorder penalty cost, server cost and skill cost).","PeriodicalId":260701,"journal":{"name":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2017.7974486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We study a single location supply system for repairable spare parts. The system consists of a multi-server repair shop and inventory with ready-to-use spare parts. When a failed part is received, a new (or as-good-as-new) replacement part is sent back, and the failed part is forwarded to the repairshop. In the case of unavailability of spare parts, failed requests are backordered and fulfilled when a ready-for-use part of the same type is received from the repairshop. The repair shop has several multi-skilled parallel servers (technicians) that are capable of handling certain types of spares. In this paper, we propose a Particle Swarm Optimization heuristic combined with Discrete-Event Simulation for optimizing the cross-training policy (skill assignment scheme) while minimizing the total system cost (consisting of inventory costs, backorder penalty cost, server cost and skill cost).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于仿真的备件供应系统交叉训练策略粒子群优化
研究了一种可修备件单点供应系统。该系统由一个多服务器维修车间和库存的现成备件组成。当收到故障部件时,将发送一个新的(或与新的一样)替换部件,并将故障部件转发到修理厂。在备件不可用的情况下,失败的请求将延期订购,并在从修理厂收到相同类型的可用部件时完成。维修车间有几个多技能的并行服务器(技术人员),能够处理某些类型的备件。本文提出了一种结合离散事件模拟的粒子群启发式算法,用于优化交叉训练策略(技能分配方案),同时最小化系统总成本(包括库存成本、缺货惩罚成本、服务器成本和技能成本)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blood vessel segmentation in retinal images using echo state networks Global mean square exponential synchronization of stochastic neural networks with time-varying delays Navigation of mobile robot with cooperation of quadcopter Impact of grey wolf optimization on WSN cluster formation and lifetime expansion The optimization of vehicle routing of communal waste in an urban environment using a nearest neighbirs' algorithm and genetic algorithm: Communal waste vehicle routing optimization in urban areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1