Blood vessel segmentation in retinal images using echo state networks

Abdelkerim Souahlia, A. Belatreche, A. Benyettou, K. Curran
{"title":"Blood vessel segmentation in retinal images using echo state networks","authors":"Abdelkerim Souahlia, A. Belatreche, A. Benyettou, K. Curran","doi":"10.1109/ICACI.2017.7974491","DOIUrl":null,"url":null,"abstract":"We propose a novel supervised technique for blood vessel segmentation in retinal images based on echo state networks. Retinal vessel segmentation is widely used for numerous clinical purposes such as the detection of various cardiovascular and ophthalmologic diseases. A large number of retinal vessel segmentation methods have been reported, yet achieving accurate and efficient vessel segmentation still remains a challenge. Recently, reservoir computing has drawn much attention as a new computing framework based on recurrent neural networks. The Echo State Network (ESN), which uses neural nodes as the computing elements of the recurrent network, represents one of the efficient learning models of reservoir computing. This paper investigates the viability of echo state networks for blood vessel segmentation in retinal images. Initial image features are projected onto the echo state network reservoir which maps them, through its internal nodes activations, into a new set of features to be classified into vessel or non-vessel by the echo state network readout which consists, in the proposed approach, of a multi-layer perceptron. Experimental results on the publicly available DRIVE dataset, commonly used in retinal vessel segmentation research, demonstrate the ability of the proposed method in achieving promising performance results in terms of both segmentation accuracy and efficiency.","PeriodicalId":260701,"journal":{"name":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2017.7974491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a novel supervised technique for blood vessel segmentation in retinal images based on echo state networks. Retinal vessel segmentation is widely used for numerous clinical purposes such as the detection of various cardiovascular and ophthalmologic diseases. A large number of retinal vessel segmentation methods have been reported, yet achieving accurate and efficient vessel segmentation still remains a challenge. Recently, reservoir computing has drawn much attention as a new computing framework based on recurrent neural networks. The Echo State Network (ESN), which uses neural nodes as the computing elements of the recurrent network, represents one of the efficient learning models of reservoir computing. This paper investigates the viability of echo state networks for blood vessel segmentation in retinal images. Initial image features are projected onto the echo state network reservoir which maps them, through its internal nodes activations, into a new set of features to be classified into vessel or non-vessel by the echo state network readout which consists, in the proposed approach, of a multi-layer perceptron. Experimental results on the publicly available DRIVE dataset, commonly used in retinal vessel segmentation research, demonstrate the ability of the proposed method in achieving promising performance results in terms of both segmentation accuracy and efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回声状态网络在视网膜图像中的血管分割
提出了一种基于回声状态网络的视网膜图像血管分割监督技术。视网膜血管分割被广泛应用于许多临床目的,如检测各种心血管和眼科疾病。目前已经报道了大量的视网膜血管分割方法,但如何实现准确、高效的血管分割仍然是一个挑战。储层计算作为一种基于递归神经网络的新型计算框架,近年来备受关注。回声状态网络(ESN)是一种高效的油藏计算学习模型,它以神经节点作为循环网络的计算元素。研究了回声状态网络在视网膜图像血管分割中的可行性。初始图像特征被投影到回声状态网络储集层上,回声状态网络储集层通过其内部节点激活将其映射成一组新的特征,通过回声状态网络读出将其分类为容器或非容器,该方法由多层感知器组成。在用于视网膜血管分割研究的公开可用的DRIVE数据集上的实验结果表明,该方法在分割精度和效率方面都取得了令人满意的性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blood vessel segmentation in retinal images using echo state networks Global mean square exponential synchronization of stochastic neural networks with time-varying delays Navigation of mobile robot with cooperation of quadcopter Impact of grey wolf optimization on WSN cluster formation and lifetime expansion The optimization of vehicle routing of communal waste in an urban environment using a nearest neighbirs' algorithm and genetic algorithm: Communal waste vehicle routing optimization in urban areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1