Resource Optimal Realization of Fault-Tolerant Quantum Circuit

Abhoy Kole, I. Sengupta
{"title":"Resource Optimal Realization of Fault-Tolerant Quantum Circuit","authors":"Abhoy Kole, I. Sengupta","doi":"10.1109/ITCIndia49857.2020.9171796","DOIUrl":null,"url":null,"abstract":"Encoding of quantum information and carrying out computation on encoded state is an essential requirement for improving the reliability of a quantum computer. Resource limitation in today’s noisy intermediate scale quantum (NISQ) processors further restricts carrying out fault-tolerant quantum gate operations on such systems. Recent experiments conducted on physical qubits of superconducting transmon type and trapped atomic ions using the fault-tolerant scheme based on [[4, 2, 2]] code have shown a systematic improvement in the fidelity of all logical quantum gate operations except the logical controlled-NOT (CNOT) operation that requires 3 physical SWAP operations for fault-tolerant realization.In this present work we propose an optimal realization of logical CNOT operations on a single or two separate [[4, 2, 2]] code-words using 4 physical CNOT operations and an additional qubit. We further introduce logical two-qubit positive and negative controlled-phase operations with varying rotation angle, and also propose the fault-tolerant realization of logical 2-controlled-phase $(C^{2}Z)$ and 2-controlled-NOT (C2 NOT) operations that are required for universal computation using [[4, 2, 2]] encoding. The implementation requires less number of encoded operations and one additional qubit. Through experiments conducted on the 15-qubit IBM Quantum Experience processor and QASM simulator the fidelity and validity of all these proposed gate operations have been verified.","PeriodicalId":346727,"journal":{"name":"2020 IEEE International Test Conference India","volume":"64 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Test Conference India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCIndia49857.2020.9171796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Encoding of quantum information and carrying out computation on encoded state is an essential requirement for improving the reliability of a quantum computer. Resource limitation in today’s noisy intermediate scale quantum (NISQ) processors further restricts carrying out fault-tolerant quantum gate operations on such systems. Recent experiments conducted on physical qubits of superconducting transmon type and trapped atomic ions using the fault-tolerant scheme based on [[4, 2, 2]] code have shown a systematic improvement in the fidelity of all logical quantum gate operations except the logical controlled-NOT (CNOT) operation that requires 3 physical SWAP operations for fault-tolerant realization.In this present work we propose an optimal realization of logical CNOT operations on a single or two separate [[4, 2, 2]] code-words using 4 physical CNOT operations and an additional qubit. We further introduce logical two-qubit positive and negative controlled-phase operations with varying rotation angle, and also propose the fault-tolerant realization of logical 2-controlled-phase $(C^{2}Z)$ and 2-controlled-NOT (C2 NOT) operations that are required for universal computation using [[4, 2, 2]] encoding. The implementation requires less number of encoded operations and one additional qubit. Through experiments conducted on the 15-qubit IBM Quantum Experience processor and QASM simulator the fidelity and validity of all these proposed gate operations have been verified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
容错量子电路的资源优化实现
对量子信息进行编码并对编码状态进行计算是提高量子计算机可靠性的基本要求。当前噪声中尺度量子(NISQ)处理器的资源限制进一步限制了在此类系统上执行容错量子门操作。最近利用基于[[4,2,2]]码的容错方案对超导transmon类型和捕获原子离子的物理量子位进行的实验表明,除了需要3次物理SWAP操作才能实现容错的逻辑控制非(CNOT)操作外,所有逻辑量子门操作的保真度都有系统的提高。在本文中,我们提出了一种使用4个物理CNOT操作和一个额外的量子比特在单个或两个独立的[[4,2,2]]码字上实现逻辑CNOT操作的最佳方法。我们进一步引入了不同旋转角度的逻辑双量子位正、负控制相位运算,并提出了使用[[4,2,2]]编码实现通用计算所需的逻辑2-控制相位$(C^{2}Z)$和2-控制非(C2 NOT)运算的容错实现。该实现需要较少的编码操作和一个额外的量子位。通过在15量子位IBM量子体验处理器和QASM模拟器上进行的实验,验证了所提出的门运算的保真度和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A non-ICL UVM approach to verifying DFx IJTAG network and its pros and cons v/s the ICL-PDL approach Machine Learning based Temperature Estimation for Test Scheduling of 3D ICs Built-In Self-Repair for Manufacturing and Runtime TSV Defects in 3D ICs ITC India 2020 Author Index Wavelet Transform based fault diagnosis in analog circuits with SVM classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1