Introduction of A Row-Skip Pattern in Complete Coverage Path Planning for Agricultural Fields

Danial Pour Arab, Matthias Spisser, C. Essert
{"title":"Introduction of A Row-Skip Pattern in Complete Coverage Path Planning for Agricultural Fields","authors":"Danial Pour Arab, Matthias Spisser, C. Essert","doi":"10.1109/ICARA56516.2023.10125619","DOIUrl":null,"url":null,"abstract":"Over the past two decades, an evolutionary effort has been established in the agricultural sector to develop efficient autonomous systems that can carry out common in-field operations including harvesting, mowing, and spraying. Increasing production while decreasing costs and environmental damages is one of the main objectives for these autonomous systems. Due to the nature of these tasks, complete coverage path planning techniques are crucial to determining the best path that covers the entire field while accounting for terrain characteristics, operational needs, and robot properties. In this study, we propose a novel complete coverage path planning approach to define the ideal path for a wheeled robot across an agricultural field. To identify all feasible solutions satisfying a set of predefined constraints, a method based on tree exploration is first proposed that examines row-skip patterns. Second, the most optimal solution is selected by a selection method. Maximizing the covered area while minimizing overlaps, non-working path length, number of turns containing reverse moves, and overall travel time are the objectives of the selection method. We showed on 6 real-world fields geometries that the row skip approach offered benefits in terms of reduction of the required headland size, and often helped decreasing the number of necessary reverse moves and the overlaps, while increasing the covered area.","PeriodicalId":443572,"journal":{"name":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","volume":"443 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA56516.2023.10125619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past two decades, an evolutionary effort has been established in the agricultural sector to develop efficient autonomous systems that can carry out common in-field operations including harvesting, mowing, and spraying. Increasing production while decreasing costs and environmental damages is one of the main objectives for these autonomous systems. Due to the nature of these tasks, complete coverage path planning techniques are crucial to determining the best path that covers the entire field while accounting for terrain characteristics, operational needs, and robot properties. In this study, we propose a novel complete coverage path planning approach to define the ideal path for a wheeled robot across an agricultural field. To identify all feasible solutions satisfying a set of predefined constraints, a method based on tree exploration is first proposed that examines row-skip patterns. Second, the most optimal solution is selected by a selection method. Maximizing the covered area while minimizing overlaps, non-working path length, number of turns containing reverse moves, and overall travel time are the objectives of the selection method. We showed on 6 real-world fields geometries that the row skip approach offered benefits in terms of reduction of the required headland size, and often helped decreasing the number of necessary reverse moves and the overlaps, while increasing the covered area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
农田全覆盖路径规划中行跃模式的引入
在过去的二十年里,农业部门已经建立了一种进化的努力,以开发有效的自主系统,可以执行常见的田间操作,包括收获、割草和喷洒。在提高产量的同时降低成本和环境破坏是这些自主系统的主要目标之一。由于这些任务的性质,完整覆盖路径规划技术对于确定覆盖整个领域的最佳路径至关重要,同时考虑到地形特征、操作需求和机器人属性。在这项研究中,我们提出了一种新的全覆盖路径规划方法来定义轮式机器人穿越农田的理想路径。为了确定满足一组预定义约束的所有可行解,首先提出了一种基于树探索的方法来检查行跳过模式。其次,采用选择法选取最优解;选择方法的目标是最大化覆盖面积,同时最小化重叠、非工作路径长度、包含反向移动的回合数和总行程时间。我们在6个实际油田的几何形状中展示了行跳过方法在减少所需的海岬尺寸方面提供的好处,并且通常有助于减少必要的反向移动和重叠的数量,同时增加覆盖面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fused Swish-ReLU Efficient-Net Model for Deepfakes Detection SensorClouds: A Framework for Real-Time Processing of Multi-modal Sensor Data for Human-Robot-Collaboration Modified Bug Algorithm with Proximity Sensors to Reduce Human-Cobot Collisions Toward Computationally Efficient Path Generation and Push Planning for Robotic Nonprehensile Manipulation Correlation Analysis of Factors Influencing the Motion Planning Accuracy of Articulated Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1