Fast model order reduction of RC networks with very large order and port count

Denis Oyaro, P. Triverio
{"title":"Fast model order reduction of RC networks with very large order and port count","authors":"Denis Oyaro, P. Triverio","doi":"10.1109/EPEPS.2015.7347158","DOIUrl":null,"url":null,"abstract":"We present a scalable method for the model order reduction of very large RC circuits. Such circuits arise in the modeling of on-chip power distribution networks. The method achieves moment matching with efficient Householder transformations and sparse matrix factorizations. It preserves passivity and generate sparse, efficient models. It overcomes the limited scalability of standard Krylov methods, that become inefficient beyond a few hundreds of ports. Numerical results demonstrate the superior performance of the proposed method in terms of reduction time and model efficiency. Scalability is demonstrated up to 1.2 million nodes and 2,400 ports.","PeriodicalId":191549,"journal":{"name":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2015.7347158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a scalable method for the model order reduction of very large RC circuits. Such circuits arise in the modeling of on-chip power distribution networks. The method achieves moment matching with efficient Householder transformations and sparse matrix factorizations. It preserves passivity and generate sparse, efficient models. It overcomes the limited scalability of standard Krylov methods, that become inefficient beyond a few hundreds of ports. Numerical results demonstrate the superior performance of the proposed method in terms of reduction time and model efficiency. Scalability is demonstrated up to 1.2 million nodes and 2,400 ports.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有非常大的订单和端口数的RC网络的快速模型订单缩减
我们提出了一种可扩展的方法来降低超大型RC电路的模型阶数。这种电路出现在片上配电网络的建模中。该方法利用高效的Householder变换和稀疏矩阵分解实现矩匹配。它保留了被动性,并生成了稀疏、高效的模型。它克服了标准Krylov方法有限的可伸缩性,这种方法在几百个端口以上就会变得效率低下。数值结果表明,该方法在简化时间和模型效率方面具有优越的性能。可扩展性演示了高达120万个节点和2400个端口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced macromodels of high-speed low-power differential drivers Broadband material model identification with GMS-parameters Modeling of power distribution networks for path finding 36-GHz-bandwidth quad-channel driver module using compact QFN package for optical coherent systems Evaluation of near-singular integrals for quadrilateral basis in integral equation solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1