Uniaxial strained silicon n-FETs on silicon-germanium-on-insulator substrates with an e-Si0.7Ge0.3 stress transfer layer and source/drain stressors for performance enhancement

G. Wang, E. Toh, Y. Foo, S. Tripathy, S. Balakumar, G. Lo, G. Samudra, Y. Yeo
{"title":"Uniaxial strained silicon n-FETs on silicon-germanium-on-insulator substrates with an e-Si0.7Ge0.3 stress transfer layer and source/drain stressors for performance enhancement","authors":"G. Wang, E. Toh, Y. Foo, S. Tripathy, S. Balakumar, G. Lo, G. Samudra, Y. Yeo","doi":"10.1109/ESSDERC.2007.4430940","DOIUrl":null,"url":null,"abstract":"We demonstrate a novel strained Si n-FET where the strain-transfer efficiency of lattice-mismatched source/drain (S/D) stressors is increased significantly by the interaction between an embedded Si0.7Ge0.3 stress transfer layer (STL) and the SiC source/drain (S/D) stressors. The compliance of the SiGe-OI STL caused significant uniaxial tensile strain to be induced in the Si channel. Devices with gate length LG down to 50 nm were fabricated. The strain effects resulted in 59% drive current improvement compared to unstrained Si control n-FETs. In addition, the incorporation of a tensile stress SiN liner improves Id,sat by an additional 10%. Improvement in source-side injection velocity as a result of the lattice interaction between the Si0.7Ge0.3 STL and S/D regions is further investigated.","PeriodicalId":103959,"journal":{"name":"ESSDERC 2007 - 37th European Solid State Device Research Conference","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSDERC 2007 - 37th European Solid State Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2007.4430940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate a novel strained Si n-FET where the strain-transfer efficiency of lattice-mismatched source/drain (S/D) stressors is increased significantly by the interaction between an embedded Si0.7Ge0.3 stress transfer layer (STL) and the SiC source/drain (S/D) stressors. The compliance of the SiGe-OI STL caused significant uniaxial tensile strain to be induced in the Si channel. Devices with gate length LG down to 50 nm were fabricated. The strain effects resulted in 59% drive current improvement compared to unstrained Si control n-FETs. In addition, the incorporation of a tensile stress SiN liner improves Id,sat by an additional 10%. Improvement in source-side injection velocity as a result of the lattice interaction between the Si0.7Ge0.3 STL and S/D regions is further investigated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用e-Si0.7Ge0.3应力传递层和源/漏应力源,在绝缘子上硅-锗衬底上制备单轴应变硅n- fet,以增强性能
我们展示了一种新型应变Si n-FET,其中通过嵌入Si0.7Ge0.3应力传递层(STL)和SiC源/漏(S/D)应力源之间的相互作用,晶格不匹配源/漏(S/D)应力源的应变传递效率显著提高。SiGe-OI STL的顺应性导致Si通道中产生显著的单轴拉伸应变。制备了栅极长度LG低至50 nm的器件。与非应变Si控制n- fet相比,应变效应导致驱动电流提高59%。此外,加入抗拉应力SiN尾管可将内径额外提高10%。进一步研究了Si0.7Ge0.3 STL和S/D区晶格相互作用对源侧注入速度的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
1T-capacitorless bulk memory: Scalability and signal impact Anisotropy of electron mobility in arbitrarily oriented FinFETs Self-aligned μTrench phase-change memory cell architecture for 90nm technology and beyond Critique of high-frequency performance of carbon nanotube FETs Analytical and compact modelling of the I-MOS (impact ionization MOS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1