{"title":"Simulation and optimization of temporary road network in mass earthmoving projects","authors":"Chang Liu, Ming Lu, Sam Johnson","doi":"10.1109/WSC.2013.6721684","DOIUrl":null,"url":null,"abstract":"Haulage cost typically accounts for around 30% of the total cost of mass earthmoving projects. The temporary road network is a major factor influencing haulage cost and production efficiency. The simulation of earthmoving operations considering temporary road networks, not only facilitates the site formation design but also leads to realistic, cost-effective construction plans. Utilizing the Floyd-Warshall algorithm and linear programming, this study formulates the temporary road network problem and sheds light on the potential benefits of selecting routes and directions for handling earthmoving jobs. An optimization approach for temporary road networks is further proposed. It reduces the total cost of the project and shortens its duration. Simulation models were used to prove the effectiveness and feasibility of optimization.","PeriodicalId":223717,"journal":{"name":"2013 Winter Simulations Conference (WSC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Winter Simulations Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2013.6721684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Haulage cost typically accounts for around 30% of the total cost of mass earthmoving projects. The temporary road network is a major factor influencing haulage cost and production efficiency. The simulation of earthmoving operations considering temporary road networks, not only facilitates the site formation design but also leads to realistic, cost-effective construction plans. Utilizing the Floyd-Warshall algorithm and linear programming, this study formulates the temporary road network problem and sheds light on the potential benefits of selecting routes and directions for handling earthmoving jobs. An optimization approach for temporary road networks is further proposed. It reduces the total cost of the project and shortens its duration. Simulation models were used to prove the effectiveness and feasibility of optimization.