Yafan Zhang, I. Belov, N. Sarius, M. Bakowski, H. Nee, P. Leisner
{"title":"Thermal evaluation of a liquid/air cooled integrated power inverter for hybrid vehicle applications","authors":"Yafan Zhang, I. Belov, N. Sarius, M. Bakowski, H. Nee, P. Leisner","doi":"10.1109/EUROSIME.2013.6529944","DOIUrl":null,"url":null,"abstract":"A thermal design of an integrated double-side cooled SiC 50kW-1200V-200A power inverter for hybrid electric vehicle applications has been proposed to enable cooling in two different automotive operating environments: under-hood and controlled temperature environment of passenger compartment. The power inverter is integrated with air/liquid cooled cold plates equipped with finned channels. Concept evaluation and CFD model calibration have been performed on a simplified thermal prototype. Computational experiments on the detailed model of the inverter, including packaging materials, have been performed for automotive industry defined application scenarios, including two extreme and one typical driving cycles. For the studied application scenarios the case temperature of the SiC transistors and diodes have been found to be below 210°C. The maximum steady-state temperature of the DC-link capacitor has been below 127 °C for the worst-case scenario including liquid cooling, and up to 140 °C for the worst-case scenario with air-cooling.","PeriodicalId":270532,"journal":{"name":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2013.6529944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A thermal design of an integrated double-side cooled SiC 50kW-1200V-200A power inverter for hybrid electric vehicle applications has been proposed to enable cooling in two different automotive operating environments: under-hood and controlled temperature environment of passenger compartment. The power inverter is integrated with air/liquid cooled cold plates equipped with finned channels. Concept evaluation and CFD model calibration have been performed on a simplified thermal prototype. Computational experiments on the detailed model of the inverter, including packaging materials, have been performed for automotive industry defined application scenarios, including two extreme and one typical driving cycles. For the studied application scenarios the case temperature of the SiC transistors and diodes have been found to be below 210°C. The maximum steady-state temperature of the DC-link capacitor has been below 127 °C for the worst-case scenario including liquid cooling, and up to 140 °C for the worst-case scenario with air-cooling.