A 213.7-µW Gesture Sensing System-On-Chip With Self-Adaptive Motion Detection and Noise-Tolerant Outermost-Edge-Based Feature Extraction in 65 nm

Van Loi Le, Taegeun Yoo, Ju Eon Kim, K. Baek, T. T. Kim
{"title":"A 213.7-µW Gesture Sensing System-On-Chip With Self-Adaptive Motion Detection and Noise-Tolerant Outermost-Edge-Based Feature Extraction in 65 nm","authors":"Van Loi Le, Taegeun Yoo, Ju Eon Kim, K. Baek, T. T. Kim","doi":"10.1109/ESSCIRC.2019.8902612","DOIUrl":null,"url":null,"abstract":"This letter presents a low-power motion gesture recognition system-on-chip (SoC) for smart devices. The SoC incorporates a low-power image sensor and a memory-efficient outermost-edge-based gesture sensing DSP. The DSP utilizes a self-adaptive motion detector that automatically updates a motion-pixel threshold for accurately sensing hand movements. A convolution-based noise-tolerant feature extraction (FE) technique is also developed for preventing detection errors caused by random noises in the images from the low-power sensor. The FE architecture is highly accelerated utilizing parallelisms and pipelining for achieving low-latency real-time gesture recognition. Measurements from a test chip fabricated in 65-nm CMOS show that the SoC consumes 213.7 µW with only 3-µW dynamic power at 30 f/s. The SoC occupies only 0.54 mm2, making it well applicable for wearable devices and sensor nodes. The image sensor is fully operational down to 0.6 V while the DSP can be scaled down to 0.46 V. The average recognition accuracy of the system is 85% while the latency is 1.056 ms.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This letter presents a low-power motion gesture recognition system-on-chip (SoC) for smart devices. The SoC incorporates a low-power image sensor and a memory-efficient outermost-edge-based gesture sensing DSP. The DSP utilizes a self-adaptive motion detector that automatically updates a motion-pixel threshold for accurately sensing hand movements. A convolution-based noise-tolerant feature extraction (FE) technique is also developed for preventing detection errors caused by random noises in the images from the low-power sensor. The FE architecture is highly accelerated utilizing parallelisms and pipelining for achieving low-latency real-time gesture recognition. Measurements from a test chip fabricated in 65-nm CMOS show that the SoC consumes 213.7 µW with only 3-µW dynamic power at 30 f/s. The SoC occupies only 0.54 mm2, making it well applicable for wearable devices and sensor nodes. The image sensor is fully operational down to 0.6 V while the DSP can be scaled down to 0.46 V. The average recognition accuracy of the system is 85% while the latency is 1.056 ms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应运动检测和抗噪声外缘特征提取的213.7µW手势传感片上系统
本文介绍了一种用于智能设备的低功耗动作手势识别片上系统(SoC)。该SoC集成了一个低功耗图像传感器和一个内存高效的基于外缘的手势传感DSP。DSP采用自适应运动检测器,自动更新运动像素阈值,以准确感知手部运动。为了防止低功耗传感器图像中随机噪声引起的检测误差,提出了一种基于卷积的耐噪声特征提取技术。FE架构是高度加速利用并行和流水线实现低延迟实时手势识别。65纳米CMOS测试芯片的测量结果表明,该SoC在30 f/s时功耗为213.7µW,动态功率仅为3µW。SoC占地面积仅为0.54 mm2,适用于可穿戴设备和传感器节点。图像传感器在0.6 V下完全工作,而DSP可以缩小到0.46 V。系统的平均识别准确率为85%,延迟为1.056 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 78 fs RMS Jitter Injection-Locked Clock Multiplier Using Transformer-Based Ultra-Low-Power VCO An Integrated Programmable High-Voltage Bipolar Pulser With Embedded Transmit/Receive Switch for Miniature Ultrasound Probes Machine Learning Based Prior-Knowledge-Free Calibration for Split Pipelined-SAR ADCs with Open-Loop Amplifiers Achieving 93.7-dB SFDR An 18 dBm 155-180 GHz SiGe Power Amplifier Using a 4-Way T-Junction Combining Network A Bidirectional Brain Computer Interface with 64-Channel Recording, Resonant Stimulation and Artifact Suppression in Standard 65nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1