Robotic Arm Trajectory Tracking Control Based on An RBF Neural Network Adaptive Control Algorithm

Baojian Qin, Wenhao Zhang, Shijian Dong, Shenquan Wang, Yu-lian Jiang
{"title":"Robotic Arm Trajectory Tracking Control Based on An RBF Neural Network Adaptive Control Algorithm","authors":"Baojian Qin, Wenhao Zhang, Shijian Dong, Shenquan Wang, Yu-lian Jiang","doi":"10.1109/ICIST55546.2022.9926773","DOIUrl":null,"url":null,"abstract":"This work investigates and contrasts two approaches for trajectory tracking control strategies for robotic operating systems: model-free adaptive algorithm and radial basis function (RBF) neural network adaptive algorithm. The tracking for high precision systems is then finished using a computational torque control approach in conjunction with a compensating controller designed based on this algorithm. The model-free adaptive control technique just employs these I/O data to construct the controller and only needs to know the input and output data of the controlled system. It is not required to know the specific model information of the controlled system. Last but not least, the experimental trajectory tracking results show that the RBF neural network can better track the trajectory of the manipulator with a relatively small tracking error.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates and contrasts two approaches for trajectory tracking control strategies for robotic operating systems: model-free adaptive algorithm and radial basis function (RBF) neural network adaptive algorithm. The tracking for high precision systems is then finished using a computational torque control approach in conjunction with a compensating controller designed based on this algorithm. The model-free adaptive control technique just employs these I/O data to construct the controller and only needs to know the input and output data of the controlled system. It is not required to know the specific model information of the controlled system. Last but not least, the experimental trajectory tracking results show that the RBF neural network can better track the trajectory of the manipulator with a relatively small tracking error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RBF神经网络自适应控制算法的机械臂轨迹跟踪控制
本文研究并对比了机器人操作系统轨迹跟踪控制策略的两种方法:无模型自适应算法和径向基函数(RBF)神经网络自适应算法。然后利用计算转矩控制方法结合基于该算法设计的补偿控制器完成高精度系统的跟踪。无模型自适应控制技术只是利用这些I/O数据来构造控制器,只需要知道被控系统的输入和输出数据。不需要知道被控系统的具体模型信息。最后,实验轨迹跟踪结果表明,RBF神经网络能够较好地跟踪机械臂的轨迹,且跟踪误差较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Marine Aquaculture Information Extraction from Optical Remote Sensing Images via MDOAU2-net A hybrid intelligent system for assisting low-vision people with over-the-counter medication Practical Adaptive Event-triggered Finite-time Stabilization for A Class of Second-order Systems Neurodynamics-based Iteratively Reweighted Convex Optimization for Sparse Signal Reconstruction A novel energy carbon emission codes based carbon efficiency evaluation method for enterprises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1