R. Sherwood, A. Mishkin, T. Estlin, Steve Ankuo Chien, P. Backes, J. Norris, B. Cooper, S. Maxwell, G. Rabideau
{"title":"Autonomously generating operations sequences for a Mars rover using AI-based planning","authors":"R. Sherwood, A. Mishkin, T. Estlin, Steve Ankuo Chien, P. Backes, J. Norris, B. Cooper, S. Maxwell, G. Rabideau","doi":"10.1109/IROS.2001.976267","DOIUrl":null,"url":null,"abstract":"This paper discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences. This prototype is based on ASPEN (Automated Scheduling and Planning Environment). This Artificial Intelligence (AI) based planning and scheduling system will automatically generate a command sequence that will execute: within resource constraints and satisfy flight rules. An automated planning and scheduling system encodes rover design knowledge and uses the search and reasoning techniques to automatically generate low-level command sequences while respecting the rover operability constraints. This prototype planning system has been field-tested using the Rocky-7 rover at JPL, and will be field-tested on more complex rovers to prove its effectiveness before transferring the technology to flight operations for an upcoming NASA mission. The goal-driven commanding of planetary rovers greatly reduces the requirements for highly skilled rover engineering personnel. This in turn greatly reduces mission operations costs and permits a faster response to changes in rover states.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2001.976267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences. This prototype is based on ASPEN (Automated Scheduling and Planning Environment). This Artificial Intelligence (AI) based planning and scheduling system will automatically generate a command sequence that will execute: within resource constraints and satisfy flight rules. An automated planning and scheduling system encodes rover design knowledge and uses the search and reasoning techniques to automatically generate low-level command sequences while respecting the rover operability constraints. This prototype planning system has been field-tested using the Rocky-7 rover at JPL, and will be field-tested on more complex rovers to prove its effectiveness before transferring the technology to flight operations for an upcoming NASA mission. The goal-driven commanding of planetary rovers greatly reduces the requirements for highly skilled rover engineering personnel. This in turn greatly reduces mission operations costs and permits a faster response to changes in rover states.