Hardware approximate computing: how, why, when and where? (special session)

Hassaan Saadat, S. Parameswaran
{"title":"Hardware approximate computing: how, why, when and where? (special session)","authors":"Hassaan Saadat, S. Parameswaran","doi":"10.1145/3125501.3125518","DOIUrl":null,"url":null,"abstract":"Approximate computing in hardware is generally aimed at power or energy optimization as the primary target. We suggest that hardware approximate computing can be more beneficial when area reduction is the primary target. Additionally, we advocate that the hardware approximation schemes which allow usage of high-level libraries for their sub-components can leverage the power offered by modern synthesis tools. We demonstrate using experimental results that such approximations therefore achieve more efficient synthesis than the deeply hierarchical approximations.","PeriodicalId":259093,"journal":{"name":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3125501.3125518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Approximate computing in hardware is generally aimed at power or energy optimization as the primary target. We suggest that hardware approximate computing can be more beneficial when area reduction is the primary target. Additionally, we advocate that the hardware approximation schemes which allow usage of high-level libraries for their sub-components can leverage the power offered by modern synthesis tools. We demonstrate using experimental results that such approximations therefore achieve more efficient synthesis than the deeply hierarchical approximations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硬件近似计算:如何,为什么,何时何地?(特别会议)
硬件中的近似计算通常以功率或能量优化为主要目标。我们建议,当减少面积是主要目标时,硬件近似计算可能更有益。此外,我们主张硬件近似方案允许为其子组件使用高级库,可以利用现代合成工具提供的功能。我们用实验结果证明,这种近似因此比深度层次近似实现更有效的综合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling reliable main memory using STT-MRAM via restore-aware memory management: work-in-progress Multi-grained performance estimation for MPSoC compilers: work-in-progress Prediction based convolution neural network acceleration: work-in-progress Towards efficient quantized neural network inference on mobile devices: work-in-progress A quantifiable approach to approximate computing: special session
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1