Efficient Genetic Algorithm-based LDPC Code Design for IoT Applications

Loc Nguyen-Van-Thanh, Tan Do-Duy
{"title":"Efficient Genetic Algorithm-based LDPC Code Design for IoT Applications","authors":"Loc Nguyen-Van-Thanh, Tan Do-Duy","doi":"10.1109/ICSSE58758.2023.10227247","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an improved Low-Density Parity-Check (LDPC) code design scheme based on the existing genetic optimization-based LDPC code design scheme proposed in [1]. In particular, we perform the removal of the girth-4 property of the parity check matrix (H-matrix) and utilize the min-sum decoding algorithm instead of the Belief Propagation (BP) algorithm in order to enhance the performance of the LDPC code. Furthermore, an (32,64) LDPC code is considered in this paper. Finally, we evaluate the block error rate (BLER) of the LDPC code over white Gaussian noise channels. By means of evaluation results using Matlab, we indicate that our proposed approach can achieve a gain of more than 11% in terms of BLER compared to the existing schemes without significantly increasing the complexity of the decoding scheme.","PeriodicalId":280745,"journal":{"name":"2023 International Conference on System Science and Engineering (ICSSE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE58758.2023.10227247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an improved Low-Density Parity-Check (LDPC) code design scheme based on the existing genetic optimization-based LDPC code design scheme proposed in [1]. In particular, we perform the removal of the girth-4 property of the parity check matrix (H-matrix) and utilize the min-sum decoding algorithm instead of the Belief Propagation (BP) algorithm in order to enhance the performance of the LDPC code. Furthermore, an (32,64) LDPC code is considered in this paper. Finally, we evaluate the block error rate (BLER) of the LDPC code over white Gaussian noise channels. By means of evaluation results using Matlab, we indicate that our proposed approach can achieve a gain of more than 11% in terms of BLER compared to the existing schemes without significantly increasing the complexity of the decoding scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的高效物联网LDPC代码设计
本文在文献[1]中提出的基于遗传优化的LDPC码设计方案的基础上,提出了一种改进的低密度奇偶校验(Low-Density Parity-Check, LDPC)码设计方案。特别是,为了提高LDPC码的性能,我们执行了奇偶校验矩阵(h矩阵)的周长-4属性的去除,并使用最小和解码算法代替信念传播(BP)算法。此外,本文还考虑了(32,64)LDPC码。最后,我们评估了LDPC码在高斯白噪声信道上的块错误率(BLER)。通过Matlab的评估结果表明,与现有方案相比,我们提出的方法在不显著增加解码方案复杂性的情况下,在BLER方面可以获得11%以上的增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Q-Network (DQN) Approach for Automatic Vehicles Applied in the Intelligent Transportation System (ITS) Improvement in Proportional Energy Sharing and DC Bus Voltage Restoring for DC Microgrid in the Islanded Operation Mode A New Buck-Boost Converter Structure With Improved Efficiency Performance of Energy Harvesting Aided Multi-hop Mobile Relay Networks With and Without Using Cooperative Communication A New Novel of Prescribed Optimal Control and Its Application for Smart Damping System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1