GaN-on-silicon present challenges and future opportunities

T. Boles
{"title":"GaN-on-silicon present challenges and future opportunities","authors":"T. Boles","doi":"10.23919/EUMIC.2017.8230650","DOIUrl":null,"url":null,"abstract":"Gallium Nitride, in the form of epitaxial HEMT transistors on silicon carbide substrates is now almost universally acknowledged as the replacement for silicon bipolar, power MOSFET, high power devices in the RF, microwave, and mmW arenas. This is particularly true for GaN-on-SiC based MMIC's which enable state-of-the-art high frequency performance and bandwidth to be extended into Ku-Band and Ka-Band applications. The challenge for GaN-on-Silicon technology is to take advantage of these industry accepted GaN-on-SiC results and leapfrog not only the high frequency/high power performance but also drive GaN into a new cost paradigm, enabling the opening of applications currently beyond the reach of silicon carbide based systems. The design and development of basic GaN-on-Silicon structures and devices will be presented. In this discussion comparisons will be made with alternative substrate materials with emphasis on contrasting the inherent advantages of a silicon based system. Theory of operation of microwave and mmW high power HEMT devices will be presented with special emphasis on fundamental limitations of device performance including limitations on the required impedance transformations, internal and external parasitic reactance, thermal impedance, and optimization, and challenges involved by full integration into monolithic MMICs. Lastly, future directions that will enable the scaling of GaN-on-Silicon production into large wafer diameter, mainstream, CMOS silicon semiconductor technologies and marry CMOS digital control with high power/high frequency devices to create the next generation of monolithic ICs will be discussed.","PeriodicalId":120932,"journal":{"name":"2017 12th European Microwave Integrated Circuits Conference (EuMIC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMIC.2017.8230650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Gallium Nitride, in the form of epitaxial HEMT transistors on silicon carbide substrates is now almost universally acknowledged as the replacement for silicon bipolar, power MOSFET, high power devices in the RF, microwave, and mmW arenas. This is particularly true for GaN-on-SiC based MMIC's which enable state-of-the-art high frequency performance and bandwidth to be extended into Ku-Band and Ka-Band applications. The challenge for GaN-on-Silicon technology is to take advantage of these industry accepted GaN-on-SiC results and leapfrog not only the high frequency/high power performance but also drive GaN into a new cost paradigm, enabling the opening of applications currently beyond the reach of silicon carbide based systems. The design and development of basic GaN-on-Silicon structures and devices will be presented. In this discussion comparisons will be made with alternative substrate materials with emphasis on contrasting the inherent advantages of a silicon based system. Theory of operation of microwave and mmW high power HEMT devices will be presented with special emphasis on fundamental limitations of device performance including limitations on the required impedance transformations, internal and external parasitic reactance, thermal impedance, and optimization, and challenges involved by full integration into monolithic MMICs. Lastly, future directions that will enable the scaling of GaN-on-Silicon production into large wafer diameter, mainstream, CMOS silicon semiconductor technologies and marry CMOS digital control with high power/high frequency devices to create the next generation of monolithic ICs will be discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅基氮化镓面临的挑战和未来的机遇
氮化镓,以碳化硅衬底上外延HEMT晶体管的形式,现在几乎被普遍认为是硅双极,功率MOSFET,射频,微波和毫米波领域的大功率器件的替代品。这对于基于GaN-on-SiC的MMIC来说尤其如此,它能够将最先进的高频性能和带宽扩展到ku波段和ka波段应用中。GaN-on- silicon技术面临的挑战是利用这些行业公认的GaN-on- sic成果,不仅要超越高频/高功率性能,还要将GaN推向新的成本模式,从而开启目前碳化硅基础系统无法实现的应用。将介绍基本硅基氮化镓结构和器件的设计和开发。在本讨论中,我们将与其他衬底材料进行比较,重点是对比硅基系统的固有优势。将介绍微波和毫米波大功率HEMT器件的工作理论,特别强调器件性能的基本限制,包括所需阻抗转换的限制,内部和外部寄生电抗,热阻抗和优化,以及完全集成到单片mmic中所涉及的挑战。最后,将讨论未来的方向,使GaN-on-Silicon生产规模扩大到大晶圆直径,主流CMOS硅半导体技术,并将CMOS数字控制与高功率/高频器件结合起来,以创建下一代单片集成电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 100–140 GHz SiGe-BiCMOS sub-harmonic down-converter mixer A 24-GHz transceiver with RF power envelope digital control for automotive radar ICs High-efficiency watt-level MASMOS® power amplifier for LTE applications 12/25W wideband LDMOS Power Amplifier IC (3400–3800MHz) For 5G base station applications Rugged AlGaAs P-I-N diode switches: High power RF & mmW all-shunt and series-shunt architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1