A compact DC model for dual-independent-gate FinFETs

M. Hasan, P. Gaillardon, B. Sensale‐Rodriguez
{"title":"A compact DC model for dual-independent-gate FinFETs","authors":"M. Hasan, P. Gaillardon, B. Sensale‐Rodriguez","doi":"10.1109/DRC.2016.7548453","DOIUrl":null,"url":null,"abstract":"To: (i) reduce the power consumption in digital integrated circuits, (ii) increase the transistor trans-conductance generation efficiency in analog circuits, and (iii) attain a very sensitive nonlinear response to RF, transistors exhibiting very steep room-temperature subthreshold slope (SS) are required. The subthreshold slope of conventional MOSFETs is limited to >60mV/dec due to their current turn-on mechanism being thermionic emission. During the last decade, several emerging transistor concepts, based on alternative current transport mechanisms, have been proposed so to overcome this fundamental limitation. For instance, Tunnel FETs (TFETs) have emerged as one of the most attractive alternatives to traditional MOSFETs, with experimental demonstrations of SS below 30 mV/dec, due to the current turn-on mechanism in such devices being band-to-band tunneling. In this context, dual-independent-gate (DIG) FinFETs have been also demonstrated capable of achieving a very steep subthreshold slope [1, 2]. The reason behind this super steep slope is a positive feedback induced by weak impact ionization in the device. Experimental demonstrations of DIG FinFETs have shown SS of 3.4 mV/dec at room-temperature over 5 decades of current swing [1, 2]. In this paper, we discuss a simple, closed-form analytic model for the current-voltage characteristics of DIG FinFETs, which can be of interest for many applications including circuit-design and application oriented device performance evaluation.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 74th Annual Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2016.7548453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To: (i) reduce the power consumption in digital integrated circuits, (ii) increase the transistor trans-conductance generation efficiency in analog circuits, and (iii) attain a very sensitive nonlinear response to RF, transistors exhibiting very steep room-temperature subthreshold slope (SS) are required. The subthreshold slope of conventional MOSFETs is limited to >60mV/dec due to their current turn-on mechanism being thermionic emission. During the last decade, several emerging transistor concepts, based on alternative current transport mechanisms, have been proposed so to overcome this fundamental limitation. For instance, Tunnel FETs (TFETs) have emerged as one of the most attractive alternatives to traditional MOSFETs, with experimental demonstrations of SS below 30 mV/dec, due to the current turn-on mechanism in such devices being band-to-band tunneling. In this context, dual-independent-gate (DIG) FinFETs have been also demonstrated capable of achieving a very steep subthreshold slope [1, 2]. The reason behind this super steep slope is a positive feedback induced by weak impact ionization in the device. Experimental demonstrations of DIG FinFETs have shown SS of 3.4 mV/dec at room-temperature over 5 decades of current swing [1, 2]. In this paper, we discuss a simple, closed-form analytic model for the current-voltage characteristics of DIG FinFETs, which can be of interest for many applications including circuit-design and application oriented device performance evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双独立栅极finfet的紧凑直流模型
为了:(i)降低数字集成电路的功耗,(ii)提高模拟电路中的晶体管跨导产生效率,以及(iii)获得对射频非常敏感的非线性响应,需要具有非常陡峭的室温亚阈值斜率(SS)的晶体管。由于传统mosfet的导通机制是热离子发射,其亚阈值斜率被限制在60mV/dec。在过去的十年中,几个新兴的晶体管概念,基于可选电流传输机制,已经提出,以克服这一基本限制。例如,隧道场效应管(tfet)已经成为传统mosfet最具吸引力的替代品之一,由于这种器件中的当前导通机制是带对带隧道,因此实验证明SS低于30 mV/dec。在这种情况下,双独立栅极(DIG) finfet也被证明能够实现非常陡峭的亚阈值斜率[1,2]。这个超级陡坡背后的原因是一个正反馈诱导弱冲击电离装置。DIG finfet的实验证明,在室温下,在50年的电流摆幅下,SS为3.4 mV/dec[1,2]。在本文中,我们讨论了一个简单的,封闭形式的分析模型,用于DIG finfet的电流-电压特性,它可以用于许多应用,包括电路设计和面向应用的器件性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint EMC/DRC plenary session Novel materials for next generation photonic devices True random number generation using voltage controlled spin-dice Current saturation and steep switching in graphene PN junctions using angle-dependent scattering Recent developments in mid-infrared quantum cascade lasers and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1