Research on Polynomial Regression Machine Learning Model with K-Means Algorithm for Predicting Advanced Packaging Reliability

H. H. Liao, K. Chiang
{"title":"Research on Polynomial Regression Machine Learning Model with K-Means Algorithm for Predicting Advanced Packaging Reliability","authors":"H. H. Liao, K. Chiang","doi":"10.23919/ICEP55381.2022.9795621","DOIUrl":null,"url":null,"abstract":"This study focuses on the more efficient packaging reliability prediction by considering cluster analysis and regression algorithm simultaneously. The Wafer Level Chip Scale Packaging (WLCSP) experiencing Accelerated Thermal Cycling Test (ACTC) is observed. After confirming what the failure situation is, database with various dimensions is built through validated finite element models. Next, machine learning technique is introduced. One of algorithms, Polynomial Regression(PR), is selected to predict the reliabilities of different packaging because of its accuracy and advantage in calculation time. Moreover, that combining K-Means analysis obtains optimal result is the goal.","PeriodicalId":413776,"journal":{"name":"2022 International Conference on Electronics Packaging (ICEP)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electronics Packaging (ICEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICEP55381.2022.9795621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the more efficient packaging reliability prediction by considering cluster analysis and regression algorithm simultaneously. The Wafer Level Chip Scale Packaging (WLCSP) experiencing Accelerated Thermal Cycling Test (ACTC) is observed. After confirming what the failure situation is, database with various dimensions is built through validated finite element models. Next, machine learning technique is introduced. One of algorithms, Polynomial Regression(PR), is selected to predict the reliabilities of different packaging because of its accuracy and advantage in calculation time. Moreover, that combining K-Means analysis obtains optimal result is the goal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于K-Means算法的多项式回归机器学习模型在先进封装可靠性预测中的研究
本文将聚类分析与回归算法相结合,研究更有效的包装可靠性预测方法。观察晶圆级芯片规模封装(WLCSP)经历加速热循环测试(ACTC)。在确定故障情况后,通过验证的有限元模型建立各种尺寸的数据库。接下来,介绍机器学习技术。选择多项式回归(PR)算法对不同包装的可靠性进行预测,具有精度高和计算时间短的优点。结合K-Means分析得到最优结果是目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strain-Induced Change in the Photonic Properties of Dumbbell-Shaped Graphene Nanoribbon Structures Terminal Reaction Behaviors in Micro Bumps: Comparison of Ti and Cr Adhesion Layers Low temperature interconnects in 1st level packaging and its challenges Advanced Low Dk and High-Density Photo- Imageable Dielectrics for RDL Interposer Low-Temperature Chemical Vapor Deposition of SiCN for Hybrid Bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1