A miniaturized module for Bluetooth low energy by embedding all passive components

Jongin Ryu, Hae Jin Kim, Se-Hoon Park, J. Chul
{"title":"A miniaturized module for Bluetooth low energy by embedding all passive components","authors":"Jongin Ryu, Hae Jin Kim, Se-Hoon Park, J. Chul","doi":"10.1109/EDAPS.2016.7893146","DOIUrl":null,"url":null,"abstract":"This paper presents a compact module for a Bluetooth Low Energy (BLE) by embedding all passive components as capacitors, inductors, and resistors. Passive or active components are embedded in printed-circuit-board (PCB) as called as System-on-Package (SoP). A proposed module is composed of a BLE IC, a memory, a 3-axis sensor, a crystal, inductors, capacitors, and resistors. In side view, ICs and a PCB with passive components are sequentially located from top and bottom. Capacitors, inductors and resistors are embedded in PCB. In order to check the performance and size for embedded modules, two representative modules for BLE with SMT and with SoP are designed and compared. The size of module with SMT and SoP are as 11 mm × 8 mm and 6 mm × 8 mm, respectively. Almost 44.5 % size reduction is obtained by SoP. Measured Tx power in Bluetooth are given as −2.0 dBm and BLE has good performance. This paper presented that SoP technology was better than SMT technology in a view of size. Implemented module had good performance and slim size.","PeriodicalId":191549,"journal":{"name":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS.2016.7893146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a compact module for a Bluetooth Low Energy (BLE) by embedding all passive components as capacitors, inductors, and resistors. Passive or active components are embedded in printed-circuit-board (PCB) as called as System-on-Package (SoP). A proposed module is composed of a BLE IC, a memory, a 3-axis sensor, a crystal, inductors, capacitors, and resistors. In side view, ICs and a PCB with passive components are sequentially located from top and bottom. Capacitors, inductors and resistors are embedded in PCB. In order to check the performance and size for embedded modules, two representative modules for BLE with SMT and with SoP are designed and compared. The size of module with SMT and SoP are as 11 mm × 8 mm and 6 mm × 8 mm, respectively. Almost 44.5 % size reduction is obtained by SoP. Measured Tx power in Bluetooth are given as −2.0 dBm and BLE has good performance. This paper presented that SoP technology was better than SMT technology in a view of size. Implemented module had good performance and slim size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种嵌入所有无源元件的小型低功耗蓝牙模块
本文提出了一个紧凑的低功耗蓝牙(BLE)模块,通过嵌入所有无源元件作为电容器,电感器和电阻。无源或有源元件被嵌入印刷电路板(PCB)中,称为系统级封装(SoP)。提出的模块由BLE IC、存储器、3轴传感器、晶体、电感、电容和电阻组成。从侧面看,ic和带无源元件的PCB依次从上到下排列。电容器、电感和电阻嵌入在PCB中。为了检查嵌入式模块的性能和尺寸,设计了两个具有代表性的带SMT和带SoP的BLE模块并进行了比较。SMT和SoP模块的尺寸分别为11mm × 8mm和6mm × 8mm。通过SoP可使粒径减小44.5%。蓝牙的实测Tx功率为−2.0 dBm,具有良好的性能。从尺寸的角度来看,SoP技术优于SMT技术。实现的模块具有良好的性能和小巧的尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced macromodels of high-speed low-power differential drivers Broadband material model identification with GMS-parameters Modeling of power distribution networks for path finding 36-GHz-bandwidth quad-channel driver module using compact QFN package for optical coherent systems Evaluation of near-singular integrals for quadrilateral basis in integral equation solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1