Lei Gu, M. Moallem, E. Bostanci, Shiliang Wang, Patil Devendra
{"title":"Extended field reconstruction method for modeling of interior permanent magnet synchronous machines","authors":"Lei Gu, M. Moallem, E. Bostanci, Shiliang Wang, Patil Devendra","doi":"10.1109/ITEC.2016.7520252","DOIUrl":null,"url":null,"abstract":"This paper presents an extended field reconstruction method (EFRM) that is developed to model an interior permanent magnet synchronous machine (IPMSM), which is known for its high power density and power factor. Traditional field reconstruction method is a very convenient tool for the modeling and analysis of the performance of the surface mounted permanent magnet machine (SPMSM). Regarding IPMSM, which usually works under saturation, traditional FRM method cannot be directly applied. An improved FRM, which considers both saturation and slottings effects, is proposed in this study. Comparisons with finite element analysis (FEA) show that EFRM has an acceptable accuracy and takes less computation time.","PeriodicalId":280676,"journal":{"name":"2016 IEEE Transportation Electrification Conference and Expo (ITEC)","volume":"75 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Transportation Electrification Conference and Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC.2016.7520252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper presents an extended field reconstruction method (EFRM) that is developed to model an interior permanent magnet synchronous machine (IPMSM), which is known for its high power density and power factor. Traditional field reconstruction method is a very convenient tool for the modeling and analysis of the performance of the surface mounted permanent magnet machine (SPMSM). Regarding IPMSM, which usually works under saturation, traditional FRM method cannot be directly applied. An improved FRM, which considers both saturation and slottings effects, is proposed in this study. Comparisons with finite element analysis (FEA) show that EFRM has an acceptable accuracy and takes less computation time.