Time-Multiplexed Flash ADC for Deep Neural Network Analog in-Memory Computing

A. Boni, Francesco Frattini, Michele Caselli
{"title":"Time-Multiplexed Flash ADC for Deep Neural Network Analog in-Memory Computing","authors":"A. Boni, Francesco Frattini, Michele Caselli","doi":"10.1109/icecs53924.2021.9665494","DOIUrl":null,"url":null,"abstract":"This paper presents a Flash A/D converter to be integrated at the periphery of mixed-signal computing memories for convolutional neural networks. We investigate the feasibility of a true time-multiplexing, which allows to greatly relax the ADC requirements of area and aspect ratio, without sacrificing the data throughput of the memory array. The ADC, based on a strong-arm latched comparator combining built-in reference generation, body bias, and offset calibration, exhibits 29.8-dB SNDR at 3.2 GS/s with 1.5-mW power consumption, and a silicon area of $900\\ \\mu\\mathrm{m}^{2}$. Integrated with the memory array, the converter enables up to 32-to-1 column multiplexing with 20 ns of A/D conversion latency.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a Flash A/D converter to be integrated at the periphery of mixed-signal computing memories for convolutional neural networks. We investigate the feasibility of a true time-multiplexing, which allows to greatly relax the ADC requirements of area and aspect ratio, without sacrificing the data throughput of the memory array. The ADC, based on a strong-arm latched comparator combining built-in reference generation, body bias, and offset calibration, exhibits 29.8-dB SNDR at 3.2 GS/s with 1.5-mW power consumption, and a silicon area of $900\ \mu\mathrm{m}^{2}$. Integrated with the memory array, the converter enables up to 32-to-1 column multiplexing with 20 ns of A/D conversion latency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于深度神经网络内存模拟计算的时间复用Flash ADC
本文提出了一种集成在卷积神经网络混合信号计算存储器外围的Flash a /D转换器。我们研究了一种真正的时间复用的可行性,它可以大大放宽ADC对面积和纵横比的要求,而不会牺牲存储阵列的数据吞吐量。该ADC基于强臂锁存比较器,结合内置基准生成、体偏置和偏置校准,在3.2 GS/s下具有29.8 db SNDR,功耗为1.5 mw,硅面积为$900\ \mu\math {m}^{2}$。该转换器与存储阵列集成,可实现32对1列复用,A/D转换延迟为20ns。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gm/ID Design Methodology for 28 nm FD-SOI CMOS Resistive Feedback LNAs Dual Output Regulating Rectifier for an Implantable Neural Interface Frequency-Interleaved ADC with RF Equivalent Ideal Filter for Broadband Optical Communication Receivers Cardiovascular Segmentation Methods Based on Weak or no Prior A 0.2V 0.97nW 0.011mm2 Fully-Passive mHBC Tag Using Intermediate Interference Modulation in 65nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1