Machine learning for noisy multivariate time series classification: a comparison and practical evaluation

A. P. S. Silva, Lucas R. Abbade, R. D. S. Cunha, T. M. Suller, Eric O. Gomes, E. Gomi, A. H. R. Costa
{"title":"Machine learning for noisy multivariate time series classification: a comparison and practical evaluation","authors":"A. P. S. Silva, Lucas R. Abbade, R. D. S. Cunha, T. M. Suller, Eric O. Gomes, E. Gomi, A. H. R. Costa","doi":"10.5753/eniac.2022.227600","DOIUrl":null,"url":null,"abstract":"Multivariate Time Series Classification (MTSC) is a complex problem that has seen great advances in recent years from the application of state-of-the-art machine learning techniques. However, there is still a need for a thorough evaluation of the effect of signal noise in the classification performance of MTSC techniques. To this end, in this paper, we evaluate three current and effective MTSC classifiers – DDTW, ROCKET and InceptionTime – and propose their use in a real-world classification problem: the detection of mooring line failure in offshore platforms. We show that all of them feature state-of-the-art accuracy, with ROCKET presenting very good results, and InceptionTime being marginally more accurate and resilient to noise.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multivariate Time Series Classification (MTSC) is a complex problem that has seen great advances in recent years from the application of state-of-the-art machine learning techniques. However, there is still a need for a thorough evaluation of the effect of signal noise in the classification performance of MTSC techniques. To this end, in this paper, we evaluate three current and effective MTSC classifiers – DDTW, ROCKET and InceptionTime – and propose their use in a real-world classification problem: the detection of mooring line failure in offshore platforms. We show that all of them feature state-of-the-art accuracy, with ROCKET presenting very good results, and InceptionTime being marginally more accurate and resilient to noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多变量时间序列分类的机器学习:比较与实用评价
多元时间序列分类(MTSC)是一个复杂的问题,近年来由于最先进的机器学习技术的应用而取得了很大的进展。然而,仍然需要对信号噪声对MTSC技术分类性能的影响进行全面的评估。为此,在本文中,我们评估了三种当前有效的MTSC分类器- DDTW, ROCKET和InceptionTime -并提出了它们在现实世界分类问题中的应用:海上平台系泊线故障的检测。我们表明,它们都具有最先进的精度,其中ROCKET呈现出非常好的结果,而InceptionTime略微更准确,对噪声更有弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Learned OWA Operators in Pooling and Channel Aggregation Layers in Convolutional Neural Networks Improving steel making off-gas predictions by mixing classification and regression multi-modal multivariate models A Framework for prediction of dropout in distance learning through XAI techniques in Virtual Learning Environment Textile defect detection using YOLOv5 on AITEX Dataset Aspects of a learned model to predict the quality of life of university students in Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1