Comparison of modern optimization algorithms for automated control tasks

D. M. Krasnenko, A. S. Pomogaev, A. S. Shtylenko, D. Dementev
{"title":"Comparison of modern optimization algorithms for automated control tasks","authors":"D. M. Krasnenko, A. S. Pomogaev, A. S. Shtylenko, D. Dementev","doi":"10.1109/REEPE51337.2021.9388055","DOIUrl":null,"url":null,"abstract":"This review article considers various algorithms of optimization methods for solving local and global optimization problems in automatic control theory. The necessity, essence and features of deterministic, stochastic and evolutionary methods and their algorithms will be described. As well as their mathematical and logical basis. The result of the work will be a comparative characterization of the advantages and disadvantages of the described methods and optimization algorithms, determining the level of efficiency and the amount of resources needed for each of them.","PeriodicalId":272476,"journal":{"name":"2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REEPE51337.2021.9388055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This review article considers various algorithms of optimization methods for solving local and global optimization problems in automatic control theory. The necessity, essence and features of deterministic, stochastic and evolutionary methods and their algorithms will be described. As well as their mathematical and logical basis. The result of the work will be a comparative characterization of the advantages and disadvantages of the described methods and optimization algorithms, determining the level of efficiency and the amount of resources needed for each of them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动控制任务的现代优化算法比较
本文综述了自动控制理论中解决局部和全局优化问题的各种优化方法的算法。本文将描述确定性、随机和进化方法及其算法的必要性、本质和特点。以及它们的数学和逻辑基础。工作的结果将是对所描述的方法和优化算法的优缺点进行比较表征,确定每种方法的效率水平和所需的资源量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Neural Network in the Control Loop of a Wheeled Robot Impacts of COVID-19 on the Electrical Power Dynamics and Environment of Bangladesh Lightning Measurement in Sarawak, Malaysia: First Results Development of Approaches to Assessing the Actual Technical Condition of Steam Turbines Based on Reliability Indicators Energy efficient employment of Used Petroleum Products as fuel based on environmental norms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1