Classification of Activating and Deactivating Emotions for Chatbots Using Statistical Methods

Lukas Tomaszek, M. Miklosíková, M. Malčík
{"title":"Classification of Activating and Deactivating Emotions for Chatbots Using Statistical Methods","authors":"Lukas Tomaszek, M. Miklosíková, M. Malčík","doi":"10.1109/Informatics57926.2022.10083485","DOIUrl":null,"url":null,"abstract":"Emotion recognition is the current trend. Being able to recognize emotions can help us in the creation of artificial intelligence interacting with humans, but also in the psychological problems of individuals. In this paper, we focus on comparing activating and deactivating emotions using peak analysis. As the results show, individuals experience more peaks during activating emotions than during deactivating emotions. This result may help us to identify emotions more accurately and develop more complex classification algorithms.","PeriodicalId":101488,"journal":{"name":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Informatics57926.2022.10083485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emotion recognition is the current trend. Being able to recognize emotions can help us in the creation of artificial intelligence interacting with humans, but also in the psychological problems of individuals. In this paper, we focus on comparing activating and deactivating emotions using peak analysis. As the results show, individuals experience more peaks during activating emotions than during deactivating emotions. This result may help us to identify emotions more accurately and develop more complex classification algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于统计方法的聊天机器人情绪激活与失效分类
情感识别是当前的趋势。能够识别情绪可以帮助我们创造与人类互动的人工智能,也可以帮助我们解决个人的心理问题。在本文中,我们着重于使用峰值分析来比较激活和停用情绪。结果表明,个体在激活情绪时比在抑制情绪时经历更多的高峰。这一结果可能有助于我们更准确地识别情绪,并开发更复杂的分类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software Engineers' Questions and Answers on Stack Exchange Collision detection and response approaches for computer muscle modelling Supervised learning data preprocessing for short-term traffic flow prediction A 1D CNN-based model for IoT anomaly detection using INT data Image steganography with using QR code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1