Medium voltage (≥ 2.3 kV) high frequency three-phase two-level converter design and demonstration using 10 kV SiC MOSFETs for high speed motor drive applications
S. Madhusoodhanan, K. Mainali, A. Tripathi, K. Vechalapu, S. Bhattacharya
{"title":"Medium voltage (≥ 2.3 kV) high frequency three-phase two-level converter design and demonstration using 10 kV SiC MOSFETs for high speed motor drive applications","authors":"S. Madhusoodhanan, K. Mainali, A. Tripathi, K. Vechalapu, S. Bhattacharya","doi":"10.1109/APEC.2016.7468066","DOIUrl":null,"url":null,"abstract":"High speed variable frequency motor drives are required for marine applications, compressors for oil and gas industries, wind energy generation systems etc. Traditionally, low voltage high speed motor drives are used in such applications. This results in large currents at high power levels leading to large copper loss in the motor winding. Therefore, medium voltage (MV) drives are being considered. The silicon (Si) based MV drives need gears to increase the speed due to low switching frequency operation of Si devices in the converter. Gears reduce both efficiency and power density. With the development of 10 kV SiC MOSFET, high switching frequency at MV is possible, which has enabled the scope of high power density MV direct drive variable speed controlled motors. In this paper, the design of a three-phase, 2-level, ≥ 2.3 kV MV, high frequency converter based on 10 kV SiC MOSEFT is explained. Performance analysis is presented along with experimental demonstration.","PeriodicalId":143091,"journal":{"name":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2016.7468066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
High speed variable frequency motor drives are required for marine applications, compressors for oil and gas industries, wind energy generation systems etc. Traditionally, low voltage high speed motor drives are used in such applications. This results in large currents at high power levels leading to large copper loss in the motor winding. Therefore, medium voltage (MV) drives are being considered. The silicon (Si) based MV drives need gears to increase the speed due to low switching frequency operation of Si devices in the converter. Gears reduce both efficiency and power density. With the development of 10 kV SiC MOSFET, high switching frequency at MV is possible, which has enabled the scope of high power density MV direct drive variable speed controlled motors. In this paper, the design of a three-phase, 2-level, ≥ 2.3 kV MV, high frequency converter based on 10 kV SiC MOSEFT is explained. Performance analysis is presented along with experimental demonstration.
中压(≥2.3 kV)高频三相两电平变换器的设计和演示,使用10 kV SiC mosfet用于高速电机驱动应用
高速变频电机驱动需要用于船舶应用,石油和天然气工业的压缩机,风力发电系统等。传统上,低压高速电机驱动器用于此类应用。这导致在高功率水平下产生大电流,导致电机绕组中的大铜损耗。因此,正在考虑中压(MV)驱动器。基于硅(Si)的中压驱动器需要齿轮来提高速度,因为转换器中硅器件的开关频率较低。齿轮降低了效率和功率密度。随着10 kV SiC MOSFET的发展,使得MV高开关频率成为可能,从而实现了高功率密度MV直接驱动变速控制电机的范围。本文介绍了一种基于10 kV SiC MOSEFT的三相2电平、≥2.3 kV MV高频变频器的设计。并进行了性能分析和实验验证。