Design of Press-Pack Packaging for High Voltage SiC DSRD Stack

Yingjie Yang, Lin Liang, Hai Shang, Yong Kang, Hui Yan
{"title":"Design of Press-Pack Packaging for High Voltage SiC DSRD Stack","authors":"Yingjie Yang, Lin Liang, Hai Shang, Yong Kang, Hui Yan","doi":"10.1109/WiPDAAsia49671.2020.9360250","DOIUrl":null,"url":null,"abstract":"SiC drift step recovery diode (DSRD) could be applied in the field of nanosecond high-power pulses. There is a demand for packaging for higher voltage and higher speed SiC DSRD. This paper proposes a stacked structure consisting of several high voltage SiC DSRD chips connected in series by rigid press-pack packaging. Finite element simulations performed to investigate the parasitic parameter, thermal performance in the packaging show that the packaging gets low parasitic inductance of about 3.5 nH and favorable heat dissipation capability. For the high-voltage SiC DSRD press-pack modules, the high field concentration around the DSRD chips is more critical. The objective is to build uniform electric field by structural optimization. A methodology to optimize the length of the metal conductive layer inside the packaging is proposed. Finally, the impact of the length on the electric field distribution is investigated quantitatively with Maxwell simulations. The electric field optimization brought by the platform reduces the maximum electric field intensity by 16%, which provides a packaging design reference for the upcoming high-voltage SiC DSRD devices.","PeriodicalId":432666,"journal":{"name":"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WiPDAAsia49671.2020.9360250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SiC drift step recovery diode (DSRD) could be applied in the field of nanosecond high-power pulses. There is a demand for packaging for higher voltage and higher speed SiC DSRD. This paper proposes a stacked structure consisting of several high voltage SiC DSRD chips connected in series by rigid press-pack packaging. Finite element simulations performed to investigate the parasitic parameter, thermal performance in the packaging show that the packaging gets low parasitic inductance of about 3.5 nH and favorable heat dissipation capability. For the high-voltage SiC DSRD press-pack modules, the high field concentration around the DSRD chips is more critical. The objective is to build uniform electric field by structural optimization. A methodology to optimize the length of the metal conductive layer inside the packaging is proposed. Finally, the impact of the length on the electric field distribution is investigated quantitatively with Maxwell simulations. The electric field optimization brought by the platform reduces the maximum electric field intensity by 16%, which provides a packaging design reference for the upcoming high-voltage SiC DSRD devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高压SiC dsd堆叠压包封装设计
SiC漂移阶跃恢复二极管可以应用于纳秒级高功率脉冲领域。对更高电压和更高速度的SiC dsd的封装有需求。本文提出了一种由多个高压SiC dsd芯片通过刚性压包封装串联而成的堆叠结构。对封装的寄生参数和热性能进行了有限元模拟,结果表明该封装具有较低的寄生电感,约为3.5 nH,具有良好的散热性能。对于高压SiC DSRD压封装模块,DSRD芯片周围的高场浓度更为关键。目的是通过结构优化建立均匀电场。提出了一种优化封装内金属导电层长度的方法。最后,通过Maxwell模拟定量研究了长度对电场分布的影响。该平台带来的电场优化使最大电场强度降低了16%,为即将推出的高压SiC dsd器件提供了封装设计参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
General Equation to Determine Design Rules for Mitigating Partial Discharge and Electrical Breakdown in Power Module Layouts The Path Forward for GaN Power Devices A Variable DC-Link Voltage Determination Method for Motor Drives with SiC MOSFETs High Electron Mobility of 1880 cm2 V-S In0.17 Al0.83N/GaN-on-Si HEMTs with GaN Cap Layer Substrate Effects in GaN-on-Si Integrated Bridge Circuit and Proposal of Engineered Bulk Silicon Substrate for GaN Power ICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1