{"title":"Lightweight palm and finger tracking for real-time 3D gesture control","authors":"Georg Hackenberg, Rod McCall, W. Broll","doi":"10.1109/VR.2011.5759431","DOIUrl":null,"url":null,"abstract":"We present a novel technique implementing barehanded interaction with virtual 3D content by employing a time-of-flight camera. The system improves on existing 3D multi-touch systems by working regardless of lighting conditions and supplying a working volume large enough for multiple users. Previous systems were limited either by environmental requirements, working volume, or computational resources necessary for realtime operation. By employing a time-of-flight camera, the system is capable of reliably recognizing gestures at the finger level in real-time at more than 50 fps with commodity computer hardware using our newly developed precision hand and finger-tracking algorithm. Building on this algorithm, the system performs gesture recognition with simple constraint modeling over statistical aggregations of the hand appearances in a working volume of more than 8 cubic meters. Two iterations of user tests were performed on a prototype system, demonstrating the feasibility and usability of the approach as well as providing first insights regarding the acceptance of true barehanded touch-based 3D interaction.","PeriodicalId":346701,"journal":{"name":"2011 IEEE Virtual Reality Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Virtual Reality Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2011.5759431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90
Abstract
We present a novel technique implementing barehanded interaction with virtual 3D content by employing a time-of-flight camera. The system improves on existing 3D multi-touch systems by working regardless of lighting conditions and supplying a working volume large enough for multiple users. Previous systems were limited either by environmental requirements, working volume, or computational resources necessary for realtime operation. By employing a time-of-flight camera, the system is capable of reliably recognizing gestures at the finger level in real-time at more than 50 fps with commodity computer hardware using our newly developed precision hand and finger-tracking algorithm. Building on this algorithm, the system performs gesture recognition with simple constraint modeling over statistical aggregations of the hand appearances in a working volume of more than 8 cubic meters. Two iterations of user tests were performed on a prototype system, demonstrating the feasibility and usability of the approach as well as providing first insights regarding the acceptance of true barehanded touch-based 3D interaction.