Asymptotic properties of hierarchical clustering in high-dimensional settings

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2023-11-14 DOI:10.1016/j.jmva.2023.105251
Kento Egashira , Kazuyoshi Yata , Makoto Aoshima
{"title":"Asymptotic properties of hierarchical clustering in high-dimensional settings","authors":"Kento Egashira ,&nbsp;Kazuyoshi Yata ,&nbsp;Makoto Aoshima","doi":"10.1016/j.jmva.2023.105251","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, three asymptotic behaviors of hierarchical clustering are defined and studied with strict conditions under several asymptotic settings, from large samples to high dimensionality, when having two independent populations. We proceed with the current comprehension of the asymptotic properties of hierarchical clustering in high-dimensional, low-sample-size (HDLSS) settings. For high-dimensional data, the asymptotic properties of hierarchical clustering are demonstrated under mild and practical settings, and we present simulation studies and hierarchical clustering performance discussions. Furthermore, hierarchical clustering was theoretically investigated when both the dimension and sample size approach infinity, and we generalized a latent number of populations considering hierarchical clustering in multiclass HDLSS settings.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"199 ","pages":"Article 105251"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X23000970/pdfft?md5=8ddd59ad8fdac0f31ad39835b3a16f61&pid=1-s2.0-S0047259X23000970-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23000970","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, three asymptotic behaviors of hierarchical clustering are defined and studied with strict conditions under several asymptotic settings, from large samples to high dimensionality, when having two independent populations. We proceed with the current comprehension of the asymptotic properties of hierarchical clustering in high-dimensional, low-sample-size (HDLSS) settings. For high-dimensional data, the asymptotic properties of hierarchical clustering are demonstrated under mild and practical settings, and we present simulation studies and hierarchical clustering performance discussions. Furthermore, hierarchical clustering was theoretically investigated when both the dimension and sample size approach infinity, and we generalized a latent number of populations considering hierarchical clustering in multiclass HDLSS settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维环境下层次聚类的渐近性质
本文在两个独立总体的情况下,定义并研究了从大样本到高维数的几种渐近设置下,层次聚类的三种渐近行为。我们继续当前的理解在高维,低样本大小(HDLSS)设置的层次聚类的渐近性质。对于高维数据,在温和和实际的环境下证明了层次聚类的渐近特性,并进行了仿真研究和层次聚类性能的讨论。此外,从理论上研究了维数和样本量都趋近于无穷大时的层次聚类,并在多类HDLSS设置中推广了考虑层次聚类的潜在总体数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Sparse functional varying-coefficient mixture regression Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1