Multivariate robust linear models for multivariate longitudinal data

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2024-11-26 DOI:10.1016/j.jmva.2024.105392
Keunbaik Lee , Jongwoo Choi , Eun Jin Jang , Dipak Dey
{"title":"Multivariate robust linear models for multivariate longitudinal data","authors":"Keunbaik Lee ,&nbsp;Jongwoo Choi ,&nbsp;Eun Jin Jang ,&nbsp;Dipak Dey","doi":"10.1016/j.jmva.2024.105392","DOIUrl":null,"url":null,"abstract":"<div><div>Linear models commonly used in longitudinal data analysis often assume a multivariate normal distribution. This assumption, however, can lead to biased mean parameter estimates in the presence of outliers. To address this, alternative linear models based on multivariate t distributions have been developed. In this paper, we review the commonly used multivariate distributions applicable to multivariate longitudinal data and introduce multivariate Laplace linear models (MLLMs) that are designed to handle outliers effectively. These models incorporate a scale matrix that is autoregressive, heteroscedastic, and positive definite, using modified Cholesky and hypersphere decompositions. We conduct simulation studies and apply these models to a real data example, comparing the performance of MLLMs with multivariate normal linear models (MNLMs) and multivariate t linear models (MTLMs), and providing insights on when each model is most appropriate.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"206 ","pages":"Article 105392"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X2400099X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Linear models commonly used in longitudinal data analysis often assume a multivariate normal distribution. This assumption, however, can lead to biased mean parameter estimates in the presence of outliers. To address this, alternative linear models based on multivariate t distributions have been developed. In this paper, we review the commonly used multivariate distributions applicable to multivariate longitudinal data and introduce multivariate Laplace linear models (MLLMs) that are designed to handle outliers effectively. These models incorporate a scale matrix that is autoregressive, heteroscedastic, and positive definite, using modified Cholesky and hypersphere decompositions. We conduct simulation studies and apply these models to a real data example, comparing the performance of MLLMs with multivariate normal linear models (MNLMs) and multivariate t linear models (MTLMs), and providing insights on when each model is most appropriate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Multivariate robust linear models for multivariate longitudinal data A general approach for testing independence in Hilbert spaces Sparse functional varying-coefficient mixture regression Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1