{"title":"A general approach for testing independence in Hilbert spaces","authors":"Daniel Gaigall , Shunyao Wu , Hua Liang","doi":"10.1016/j.jmva.2024.105384","DOIUrl":null,"url":null,"abstract":"<div><div>We generalize the projection correlation idea for testing independence of random vectors which is known as a powerful method in multivariate analysis. A universal Hilbert space approach makes the new testing procedures useful in various cases and ensures the applicability to high or even infinite dimensional data. We prove that the new tests keep the significance level under the null hypothesis of independence exactly and can detect any alternative of dependence in the limit, in particular in settings where the dimensions of the observations is infinite or tend to infinity simultaneously with the sample size. Simulations demonstrate that the generalization does not impair the good performance of the approach and confirm our theoretical findings. Furthermore, we describe the implementation of the new approach and present a real data example for illustration.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"206 ","pages":"Article 105384"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000915","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We generalize the projection correlation idea for testing independence of random vectors which is known as a powerful method in multivariate analysis. A universal Hilbert space approach makes the new testing procedures useful in various cases and ensures the applicability to high or even infinite dimensional data. We prove that the new tests keep the significance level under the null hypothesis of independence exactly and can detect any alternative of dependence in the limit, in particular in settings where the dimensions of the observations is infinite or tend to infinity simultaneously with the sample size. Simulations demonstrate that the generalization does not impair the good performance of the approach and confirm our theoretical findings. Furthermore, we describe the implementation of the new approach and present a real data example for illustration.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.