Parameter Optimization of the Power and Energy System of Unmanned Electric Drive Chassis Based on Improved Genetic Algorithms of the KOHONEN Network

IF 2.6 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC World Electric Vehicle Journal Pub Date : 2023-09-14 DOI:10.3390/wevj14090260
Weina Wang, Shiwei Xu, Hong Ouyang, Xinyu Zeng
{"title":"Parameter Optimization of the Power and Energy System of Unmanned Electric Drive Chassis Based on Improved Genetic Algorithms of the KOHONEN Network","authors":"Weina Wang, Shiwei Xu, Hong Ouyang, Xinyu Zeng","doi":"10.3390/wevj14090260","DOIUrl":null,"url":null,"abstract":"For unmanned electric drive chassis parameter optimization problems, an unmanned electric drive chassis model containing power systems and energy systems was built using CRUISE, and as the traditional genetic algorithm is prone to falling into the local optima, an improved isolation niche genetic algorithm based on KOHONEN network clustering (KIGA) is proposed. The simulation results show that the proposed KIGA can reasonably divide the initial niche populations. Compared with the traditional genetic algorithm (GA) and the isolation niche genetic algorithm (IGA), KIGA can achieve faster convergence and a better global search ability. The comprehensive performance of the unmanned electric drive chassis in terms of power and economy was increased by 8.26% with a set of better solutions. The results show that simultaneous power system and energy system parameter optimization can enhance unmanned electric drive chassis performance and that KIGA is an efficient method for optimizing the parameters of unmanned electric drive chassis.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":"24 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj14090260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

For unmanned electric drive chassis parameter optimization problems, an unmanned electric drive chassis model containing power systems and energy systems was built using CRUISE, and as the traditional genetic algorithm is prone to falling into the local optima, an improved isolation niche genetic algorithm based on KOHONEN network clustering (KIGA) is proposed. The simulation results show that the proposed KIGA can reasonably divide the initial niche populations. Compared with the traditional genetic algorithm (GA) and the isolation niche genetic algorithm (IGA), KIGA can achieve faster convergence and a better global search ability. The comprehensive performance of the unmanned electric drive chassis in terms of power and economy was increased by 8.26% with a set of better solutions. The results show that simultaneous power system and energy system parameter optimization can enhance unmanned electric drive chassis performance and that KIGA is an efficient method for optimizing the parameters of unmanned electric drive chassis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进KOHONEN网络遗传算法的无人电驱动底盘动力能源系统参数优化
针对无人驾驶电驱动底盘参数优化问题,利用CRUISE建立了包含电力系统和能源系统的无人驾驶电驱动底盘模型,针对传统遗传算法容易陷入局部最优的问题,提出了一种基于KOHONEN网络聚类(KIGA)的改进隔离小生境遗传算法。仿真结果表明,所提出的KIGA能够合理划分初始生态位种群。与传统遗传算法(GA)和隔离小生境遗传算法(IGA)相比,KIGA具有更快的收敛速度和更好的全局搜索能力。通过一套较好的解决方案,无人电驱动底盘动力性和经济性综合性能提升8.26%。结果表明,动力系统和能源系统参数同步优化可以提高无人电驱动底盘的性能,KIGA是一种有效的无人电驱动底盘参数优化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
World Electric Vehicle Journal
World Electric Vehicle Journal Engineering-Automotive Engineering
CiteScore
4.50
自引率
8.70%
发文量
196
审稿时长
8 weeks
期刊最新文献
Benefit Evaluation of Carbon Reduction and Loss Reduction under a Coordinated Transportation–Electricity Network Parameter Compensation for the Predictive Control System of a Permanent Magnet Synchronous Motor Based on Bacterial Foraging Optimization Algorithm Subcooled Liquid Hydrogen Technology for Heavy-Duty Trucks Time-Sensitive Network Simulation for In-Vehicle Ethernet Using SARSA Algorithm Emerging Trends in Autonomous Vehicle Perception: Multimodal Fusion for 3D Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1