Haiyun An, Qian Zhou, Yongyong Jia, Zhe Chen, Bingcheng Cen, Tong Zhu, Huiyun Li, Yifei Wang
{"title":"Benefit Evaluation of Carbon Reduction and Loss Reduction under a Coordinated Transportation–Electricity Network","authors":"Haiyun An, Qian Zhou, Yongyong Jia, Zhe Chen, Bingcheng Cen, Tong Zhu, Huiyun Li, Yifei Wang","doi":"10.3390/wevj15010024","DOIUrl":null,"url":null,"abstract":"With the extensive promotion of new energy vehicles, the number of electric vehicles (EVs) in China has increased rapidly. Electric vehicles are densely parked in garages, which means parking garages contain a large amount of idle energy storage resources. How to make this idle energy storage in garages participate in power system dispatch and evaluate the network loss and system carbon emissions considering electric vehicle energy storage has become an important research topic. The uncertainty around parking habits for electric vehicles causes it to be difficult to predict compared with the traditional energy storage system. Therefore, it is necessary to study its influence on the synergistic effect of loss reduction and carbon reduction as energy storage access. The benefits of new energy power generation output growth, energy waste reduction, and carbon emission reduction brought by loss reduction measures can be well reflected in the loss reduction index system of a power system in a low-carbon scenario. In this paper, a large amount of parking information in a certain area is collected, and the approximate parking habits of all vehicles in the simulated garage are obtained by the Monte Carlo method. Then, the load aggregation model is established, which is incorporated into the power system as an energy storage model. The synergy of loss reduction and carbon reduction is considered in this paper and comprehensively optimizes the strategy of integrating electric vehicles into the power system from the perspectives of electricity and carbon. In the scenarios of carbon flow calculation and network loss calculation, the YALMIP and CPLEX of MATLAB are applied, with various constraints input for simulation, so that the benefit evaluation method of carbon reduction and loss reduction under a coordinated transportation–electricity network is obtained.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":"8 29","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj15010024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the extensive promotion of new energy vehicles, the number of electric vehicles (EVs) in China has increased rapidly. Electric vehicles are densely parked in garages, which means parking garages contain a large amount of idle energy storage resources. How to make this idle energy storage in garages participate in power system dispatch and evaluate the network loss and system carbon emissions considering electric vehicle energy storage has become an important research topic. The uncertainty around parking habits for electric vehicles causes it to be difficult to predict compared with the traditional energy storage system. Therefore, it is necessary to study its influence on the synergistic effect of loss reduction and carbon reduction as energy storage access. The benefits of new energy power generation output growth, energy waste reduction, and carbon emission reduction brought by loss reduction measures can be well reflected in the loss reduction index system of a power system in a low-carbon scenario. In this paper, a large amount of parking information in a certain area is collected, and the approximate parking habits of all vehicles in the simulated garage are obtained by the Monte Carlo method. Then, the load aggregation model is established, which is incorporated into the power system as an energy storage model. The synergy of loss reduction and carbon reduction is considered in this paper and comprehensively optimizes the strategy of integrating electric vehicles into the power system from the perspectives of electricity and carbon. In the scenarios of carbon flow calculation and network loss calculation, the YALMIP and CPLEX of MATLAB are applied, with various constraints input for simulation, so that the benefit evaluation method of carbon reduction and loss reduction under a coordinated transportation–electricity network is obtained.