A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 2: Shock-Capturing and Transonic Flows
Bjoern F. Klose, Christian Morsbach, Michael Bergmann, Alexander Hergt, Joachim Klinner, Sebastian Grund, Edmund Kuegeler
{"title":"A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 2: Shock-Capturing and Transonic Flows","authors":"Bjoern F. Klose, Christian Morsbach, Michael Bergmann, Alexander Hergt, Joachim Klinner, Sebastian Grund, Edmund Kuegeler","doi":"10.1115/1.4063827","DOIUrl":null,"url":null,"abstract":"Abstract In the second paper of this three-part series, we focus on the simulation of transonic test cases for turbomachinery applications using a high-order discontinuous Galerkin spectral element method (DGSEM). High-fidelity simulations of transonic compressors and turbines are particularly challenging, as they typically occur at high Reynolds numbers and require additional treatment to reliably capture the shock waves characterizing such flows. A recently developed finite-volume subcell shock capturing scheme tailored for the DGSEM is applied and evaluated with regard to the shock sensor. To this end, we conduct implicit large eddy simulations of a high-pressure turbine cascade from the public literature and a transonic compressor cascade measured at the German Aerospace Center, both at a high Reynolds number above 106. Based on the results, we examine modal-energy and flow-feature based shock indicator functions, compare the simulation data to experimental and numerical studies, and present an analysis of the unsteady features of the flows.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063827","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In the second paper of this three-part series, we focus on the simulation of transonic test cases for turbomachinery applications using a high-order discontinuous Galerkin spectral element method (DGSEM). High-fidelity simulations of transonic compressors and turbines are particularly challenging, as they typically occur at high Reynolds numbers and require additional treatment to reliably capture the shock waves characterizing such flows. A recently developed finite-volume subcell shock capturing scheme tailored for the DGSEM is applied and evaluated with regard to the shock sensor. To this end, we conduct implicit large eddy simulations of a high-pressure turbine cascade from the public literature and a transonic compressor cascade measured at the German Aerospace Center, both at a high Reynolds number above 106. Based on the results, we examine modal-energy and flow-feature based shock indicator functions, compare the simulation data to experimental and numerical studies, and present an analysis of the unsteady features of the flows.
期刊介绍:
The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines.
Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.