Pt-modified Fe3O4 Supported on Ni Foam Nanocomposite for Electrocatalytic Nitrate Reduction to Ammonia

IF 2.7 4区 化学 Q3 CHEMISTRY, PHYSICAL Electrocatalysis Pub Date : 2023-11-11 DOI:10.1007/s12678-023-00851-w
Sajid Mahmood, Osamah Alduhaish, Muhammad Ammar, Shahid Khan, Niaz Ahmad, Ghulam Abbas Ashraf, Noshin Afshan, Noor Hassan
{"title":"Pt-modified Fe3O4 Supported on Ni Foam Nanocomposite for Electrocatalytic Nitrate Reduction to Ammonia","authors":"Sajid Mahmood,&nbsp;Osamah Alduhaish,&nbsp;Muhammad Ammar,&nbsp;Shahid Khan,&nbsp;Niaz Ahmad,&nbsp;Ghulam Abbas Ashraf,&nbsp;Noshin Afshan,&nbsp;Noor Hassan","doi":"10.1007/s12678-023-00851-w","DOIUrl":null,"url":null,"abstract":"<div><p>Effective and sustainable electrocatalytic reduction of nitrate is greatly desired to solve the problem of global water contamination and provide a promising way to generate fossil-free ammonia. In this regard, Pt-Fe<sub>3</sub>O<sub>4</sub> nanoparticles are decorated on Ni foam (NF) using the hydrothermal method to achieve Pt-Fe<sub>3</sub>O<sub>4</sub>/NF nanocomposite electrocatalyst. Various characterization techniques investigate the structural and morphological properties of Pt-Fe<sub>3</sub>O<sub>4</sub>/NF nanocomposite. Benefiting from the small size of Pt and Fe nanoparticles, the Pt-Fe<sub>3</sub>O<sub>4</sub>/NF nanocomposite reveals excellent performance for electrocatalytic nitrate reduction with an NH<sub>4</sub><sup>+</sup> yield rate of 0.301 mmol h<sup>−1</sup> cm<sup>−2</sup> (5.418 mg h<sup>−1</sup> mg<sup>−1</sup><sub>cat.</sub>) and Faradaic efficiency of 80.7% at − 0.8 V vs. RHE. Pt-Fe<sub>3</sub>O<sub>4</sub>/NF nanocomposite exhibits unique metallic properties and abundant surface sites due to a synergistic effect of Pt-Fe nanostructure favorable for the electrochemical and hydrogenation reduction processes. Moreover, Pt-Fe<sub>3</sub>O<sub>4</sub>/NF nanocomposite reveals outstanding long-term stability and durability. Isotope labeling experiments are performed, and results demonstrate that ammonia originates from nitrate reduction. These favorable outcomes of Pt-Fe<sub>3</sub>O<sub>4</sub>/NF nanocomposite emphasize its potential for treating nitrate wastewater for ammonia recovery and prospects for its industrial applications.</p><h3>Graphical Abstract</h3><p>An efficient electrocatalyst was prepared by fabricating Pt-Fe<sub>3</sub>O<sub>4</sub> on NF using hydrothermal method for electrochemical nitrate reduction to ammonia. Pt-Fe<sub>3</sub>O<sub>4</sub>/NF showed a remarkable NH<sub>4</sub><sup>+</sup> yield rate with high Faradaic efficiency at − 0.8 V vs. RHE. Also, the Pt-Fe<sub>3</sub>O<sub>4</sub>/NF nanocomposite exhibited outstanding stability and durability.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 1","pages":"159 - 170"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-023-00851-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Effective and sustainable electrocatalytic reduction of nitrate is greatly desired to solve the problem of global water contamination and provide a promising way to generate fossil-free ammonia. In this regard, Pt-Fe3O4 nanoparticles are decorated on Ni foam (NF) using the hydrothermal method to achieve Pt-Fe3O4/NF nanocomposite electrocatalyst. Various characterization techniques investigate the structural and morphological properties of Pt-Fe3O4/NF nanocomposite. Benefiting from the small size of Pt and Fe nanoparticles, the Pt-Fe3O4/NF nanocomposite reveals excellent performance for electrocatalytic nitrate reduction with an NH4+ yield rate of 0.301 mmol h−1 cm−2 (5.418 mg h−1 mg−1cat.) and Faradaic efficiency of 80.7% at − 0.8 V vs. RHE. Pt-Fe3O4/NF nanocomposite exhibits unique metallic properties and abundant surface sites due to a synergistic effect of Pt-Fe nanostructure favorable for the electrochemical and hydrogenation reduction processes. Moreover, Pt-Fe3O4/NF nanocomposite reveals outstanding long-term stability and durability. Isotope labeling experiments are performed, and results demonstrate that ammonia originates from nitrate reduction. These favorable outcomes of Pt-Fe3O4/NF nanocomposite emphasize its potential for treating nitrate wastewater for ammonia recovery and prospects for its industrial applications.

Graphical Abstract

An efficient electrocatalyst was prepared by fabricating Pt-Fe3O4 on NF using hydrothermal method for electrochemical nitrate reduction to ammonia. Pt-Fe3O4/NF showed a remarkable NH4+ yield rate with high Faradaic efficiency at − 0.8 V vs. RHE. Also, the Pt-Fe3O4/NF nanocomposite exhibited outstanding stability and durability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持镍泡沫纳米复合材料的铂改性 Fe3O4 电催化硝酸盐还原成氨
为了解决全球水污染问题,并为生成不含化石的氨气提供一种前景广阔的方法,人们迫切希望获得有效且可持续的硝酸盐电催化还原。为此,采用水热法在泡沫镍(NF)上装饰了铂-铁三氧化四纳米粒子,从而获得了铂-铁三氧化四/NF纳米复合电催化剂。各种表征技术研究了 Pt-Fe3O4/NF 纳米复合材料的结构和形态特性。得益于铂和铁纳米颗粒的小尺寸,Pt-Fe3O4/NF 纳米复合材料在电催化硝酸盐还原方面表现优异,在 - 0.8 V 对 RHE 时,NH4+ 产率为 0.301 mmol h-1 cm-2 (5.418 mg h-1 mg-1cat.),法拉第效率为 80.7%。Pt-Fe3O4/NF 纳米复合材料具有独特的金属特性和丰富的表面位点,这是由于 Pt-Fe 纳米结构的协同效应有利于电化学和氢化还原过程。此外,Pt-Fe3O4/NF 纳米复合材料还具有出色的长期稳定性和耐久性。实验还进行了同位素标记,结果表明氨来自硝酸盐还原。Pt-Fe3O4/NF 纳米复合材料的这些有利结果强调了其在处理硝酸盐废水以回收氨方面的潜力及其工业应用前景。铂-Fe3O4/NF在-0.8 V与RHE的电压比值下显示出显著的NH4+产率和较高的法拉第效率。此外,Pt-Fe3O4/NF 纳米复合材料还具有出色的稳定性和耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrocatalysis
Electrocatalysis CHEMISTRY, PHYSICAL-ELECTROCHEMISTRY
CiteScore
4.80
自引率
6.50%
发文量
93
审稿时长
>12 weeks
期刊介绍: Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies. Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.
期刊最新文献
A Molecularly Imprinted Composite-based Novel Electrochemical Sensor Using o-Phenylenediamine, Molybdenum Nanoparticle, and Multiwalled Carbon Nanotube for Triclosan Detection from Water Cu2(V2O7)-rGO Engineered Sensor for the Electrochemical Determination of Antipsychotic drug, Pimozide ​Study of Fabrication and Properties of NiCoP Nanocrystalline Thin Film Electrodes for Hydrogen Evolution Electrocatalysts​ Green Synthesis of Cobalt Oxide Decorated Chitosan Substrates for Electrochemical Detection of Nitrite and Hydrogen Evolution Reactions Manganese Oxide Applications in Sulfonamides Electrochemical, Thermal and Optical Sensors: A Short Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1