Dawit Tibebu Haile, Teketel Yohannes, Getachew Adam Workneh
{"title":"Single-Step Electrochemical Deposition of Transition Metal-Doped CoNi@Ti Nano-Flowers for Enhanced Oxygen Evolution Reaction","authors":"Dawit Tibebu Haile, Teketel Yohannes, Getachew Adam Workneh","doi":"10.1007/s12678-024-00924-4","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, transition metal-based electrocatalysts have shown significant promise in promoting the oxygen evolution reaction (OER) as a result of their ample availability, tunable electronic properties, and catalytic capabilities. This study presents the synthesis of a transition metal-based electrocatalyst, featuring Co and Ni nanoparticles grown on Ti foil (CoNi@Ti). These nanoparticles are doped with Mn and Fe using with single-step in-situ chronoamperometry (CA) electrodeposition technique, resulting in the production of the Fe-MnCoNi@Ti nano-flower material. The results show that the Fe-MnCoNi@Ti nano-flower, with an overpotential of 261.6 mV, is an efficient electrocatalytic system for OER, achieving 10 mA cm<sup>−2</sup> and a Tafel slope of 114.3 mV dec<sup>−1</sup> in alkaline media. The comparison of the electrocatalytic performance of Fe-MnCoNi@Ti with other materials prepared in the same electrodeposition techniques and with the state-of-the-art materials indicated that our nano-flower material has comparable performance on its electrocatalytic properties for OER. In addition, the Turnover frequency (TOF) value highlights the high intrinsic activity of Fe-MnCoNi@Ti in catalyzing the OER. The stability test is also carried out by applying an overpotential of 400 mV with respect to the OER for 12 h of CA run, and it is found that Fe-MnCoNi@Ti has good stability for OER in alkaline conditions. The experimental results indicate that decorating Coniston nano-flower with Fe and Mn as dopant materials via electrodeposition technique is a simple one-step process, which led to better electrocatalytic performance of the material for the OER in alkaline media.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 2","pages":"337 - 348"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-024-00924-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, transition metal-based electrocatalysts have shown significant promise in promoting the oxygen evolution reaction (OER) as a result of their ample availability, tunable electronic properties, and catalytic capabilities. This study presents the synthesis of a transition metal-based electrocatalyst, featuring Co and Ni nanoparticles grown on Ti foil (CoNi@Ti). These nanoparticles are doped with Mn and Fe using with single-step in-situ chronoamperometry (CA) electrodeposition technique, resulting in the production of the Fe-MnCoNi@Ti nano-flower material. The results show that the Fe-MnCoNi@Ti nano-flower, with an overpotential of 261.6 mV, is an efficient electrocatalytic system for OER, achieving 10 mA cm−2 and a Tafel slope of 114.3 mV dec−1 in alkaline media. The comparison of the electrocatalytic performance of Fe-MnCoNi@Ti with other materials prepared in the same electrodeposition techniques and with the state-of-the-art materials indicated that our nano-flower material has comparable performance on its electrocatalytic properties for OER. In addition, the Turnover frequency (TOF) value highlights the high intrinsic activity of Fe-MnCoNi@Ti in catalyzing the OER. The stability test is also carried out by applying an overpotential of 400 mV with respect to the OER for 12 h of CA run, and it is found that Fe-MnCoNi@Ti has good stability for OER in alkaline conditions. The experimental results indicate that decorating Coniston nano-flower with Fe and Mn as dopant materials via electrodeposition technique is a simple one-step process, which led to better electrocatalytic performance of the material for the OER in alkaline media.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.