{"title":"Enhancement in ORR Performance by Compositing Ni-Decorated MoS2 with rGO for Alkaline Fuel Cells","authors":"Monika Shrivastav, Harshit Galriya, Ripsa Rani Nayak, Navneet Kumar Gupta, Mukesh Kumar, Rajnish Dhiman","doi":"10.1007/s12678-024-00921-7","DOIUrl":null,"url":null,"abstract":"<div><p>Due to its layered structure and appropriate electronic configuration, two-dimensional MoS<sub>2</sub> has been considered a reliable and inexpensive electrocatalyst and electrode material for the oxygen reduction reaction (ORR). Additionally, the MoS<sub>2</sub> and reduced graphene oxide (rGO) structure can act as a good host for other nano-catalysts. However, the catalytic activity of pristine MoS<sub>2</sub> is not as effective as the industrial targeted values. In this work, nickel-MoS<sub>2</sub> (Ni/MoS<sub>2</sub>) and Ni/MoS<sub>2</sub>-rGO composites are synthesized and evaluated as catalysts for ORR at the cathode. Electrochemical studies using a rotating disk electrode system confirmed that the as-synthesized catalyst exhibits good electrocatalytic activity to ORR in alkaline media (0.1 M KOH) and followed the desirable 4-electron transfer process. Ni/MoS<sub>2</sub>-rGO composite displays a current density of − 11.1 mA/cm<sup>2</sup> and half-wave and onset potentials of 0.74 V and 0.87 V, respectively, at 2400 rpm, whereas the bare MoS<sub>2</sub> shows the values of limiting current density, half-wave potential, and onset potential of − 5.8 mA/cm<sup>2</sup>, 0.61 V, and 0.79 V, respectively. Numerous highly active Mo sites, high conductivity, and high specific surface area in MoS<sub>2</sub>-rGO make it a novel catalyst material for ORR. Ni further enhances conductivity and is involved in electrochemical reactions. The onset potential slightly shifts towards the lower value after the potential cycling, whereas the limiting current density decreases by ≈9.0% for Ni/MoS<sub>2</sub>-rGO, which shows its good stability in alkaline media. Therefore, Ni/MoS<sub>2</sub>-rGO composite can be a good candidate for electrode catalyst material for alkaline fuel cells.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 2","pages":"349 - 359"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-024-00921-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its layered structure and appropriate electronic configuration, two-dimensional MoS2 has been considered a reliable and inexpensive electrocatalyst and electrode material for the oxygen reduction reaction (ORR). Additionally, the MoS2 and reduced graphene oxide (rGO) structure can act as a good host for other nano-catalysts. However, the catalytic activity of pristine MoS2 is not as effective as the industrial targeted values. In this work, nickel-MoS2 (Ni/MoS2) and Ni/MoS2-rGO composites are synthesized and evaluated as catalysts for ORR at the cathode. Electrochemical studies using a rotating disk electrode system confirmed that the as-synthesized catalyst exhibits good electrocatalytic activity to ORR in alkaline media (0.1 M KOH) and followed the desirable 4-electron transfer process. Ni/MoS2-rGO composite displays a current density of − 11.1 mA/cm2 and half-wave and onset potentials of 0.74 V and 0.87 V, respectively, at 2400 rpm, whereas the bare MoS2 shows the values of limiting current density, half-wave potential, and onset potential of − 5.8 mA/cm2, 0.61 V, and 0.79 V, respectively. Numerous highly active Mo sites, high conductivity, and high specific surface area in MoS2-rGO make it a novel catalyst material for ORR. Ni further enhances conductivity and is involved in electrochemical reactions. The onset potential slightly shifts towards the lower value after the potential cycling, whereas the limiting current density decreases by ≈9.0% for Ni/MoS2-rGO, which shows its good stability in alkaline media. Therefore, Ni/MoS2-rGO composite can be a good candidate for electrode catalyst material for alkaline fuel cells.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.