Computational Model for Image Processing in the Minds of People with Visual Agnosia using Fuzzy Cognitive Map

Elham Askari, Sara Motamed
{"title":"Computational Model for Image Processing in the Minds of People with Visual Agnosia using Fuzzy Cognitive Map","authors":"Elham Askari, Sara Motamed","doi":"10.52547/jist.34031.11.42.102","DOIUrl":null,"url":null,"abstract":"The Agnosia is a neurological condition that leads to an inability to name, recognize, and extract meaning from the visual, auditory, and sensory environment, despite the fact that the receptor organ is perfect. Visual agnosia is the most common type of this disorder. People with agnosia have trouble communicating between the mind and the brain. As a result, they cannot understand the images seen. In this paper, a model is proposed that is based on the visual pathway so that it first receives the visual stimulus and then, after understanding, the object is identified. In this paper, a model based on the visual pathway is proposed and using intelligent Fuzzy Cognitive Map will help improve image processing in the minds of these patients. First, the proposed model that is inspired by the visual perception pathway, is designed. Then, appropriate attributes that include the texture and color of the images are extracted and the concept of the seen image is perceived using Fuzzy Cognitive Mapping, the meaning recognition and the relationships between objects. This model reduces the difficulty of perceiving and recognizing objects in patients with visual agnosia. The results show that the proposed model, with 98.1% accuracy, shows better performance than other methods.","PeriodicalId":37681,"journal":{"name":"Journal of Information Systems and Telecommunication","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Systems and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/jist.34031.11.42.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The Agnosia is a neurological condition that leads to an inability to name, recognize, and extract meaning from the visual, auditory, and sensory environment, despite the fact that the receptor organ is perfect. Visual agnosia is the most common type of this disorder. People with agnosia have trouble communicating between the mind and the brain. As a result, they cannot understand the images seen. In this paper, a model is proposed that is based on the visual pathway so that it first receives the visual stimulus and then, after understanding, the object is identified. In this paper, a model based on the visual pathway is proposed and using intelligent Fuzzy Cognitive Map will help improve image processing in the minds of these patients. First, the proposed model that is inspired by the visual perception pathway, is designed. Then, appropriate attributes that include the texture and color of the images are extracted and the concept of the seen image is perceived using Fuzzy Cognitive Mapping, the meaning recognition and the relationships between objects. This model reduces the difficulty of perceiving and recognizing objects in patients with visual agnosia. The results show that the proposed model, with 98.1% accuracy, shows better performance than other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊认知图的视觉失认症患者图像处理计算模型
失认症是一种神经系统疾病,导致无法命名,识别,并从视觉,听觉和感觉环境中提取意义,尽管事实上受体器官是完美的。视觉失认症是这种疾病最常见的类型。患有失认症的人在思想和大脑之间的交流上有困难。因此,他们无法理解所看到的图像。本文提出了一种基于视觉通路的模型,它首先接受视觉刺激,然后在理解后对物体进行识别。本文提出了一种基于视觉通路的模型,并利用智能模糊认知地图(Fuzzy Cognitive Map)来提高患者的图像处理能力。首先,设计了受视觉感知路径启发的模型。然后,提取图像的纹理和颜色等适当属性,并使用模糊认知映射、意义识别和对象之间的关系来感知所见图像的概念。该模型降低了视觉失认症患者感知和识别物体的难度。结果表明,该模型的准确率为98.1%,优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Information Systems and Telecommunication
Journal of Information Systems and Telecommunication Computer Science-Information Systems
CiteScore
0.80
自引率
0.00%
发文量
24
审稿时长
24 weeks
期刊介绍: This Journal will emphasize the context of the researches based on theoretical and practical implications of information Systems and Telecommunications. JIST aims to promote the study and knowledge investigation in the related fields. The Journal covers technical, economic, social, legal and historic aspects of the rapidly expanding worldwide communications and information industry. The journal aims to put new developments in all related areas into context, help readers broaden their knowledge and deepen their understanding of telecommunications policy and practice. JIST encourages submissions that reflect the wide and interdisciplinary nature of the subject and articles that integrate technological disciplines with social, contextual and management issues. JIST is planned to build particularly its reputation by publishing qualitative researches and it welcomes such papers. This journal aims to disseminate success stories, lessons learnt, and best practices captured by researchers in the related fields.
期刊最新文献
Computational Model for Image Processing in the Minds of People with Visual Agnosia using Fuzzy Cognitive Map Cache Point Selection and Transmissions Reduction using LSTM Neural Network Performance Analysis and Activity Deviation Discovery in Event Log Using Process Mining Tool for Hospital System Energy Efficient Cross Layer MAC Protocol for Wireless Sensor Networks in Remote Area Monitoring Applications DeepFake Detection using 3D-Xception Net with Discrete Fourier Transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1