Cache Point Selection and Transmissions Reduction using LSTM Neural Network

Malihe Bahekmat, Mohammad Hossein Yaghmaee Moghaddam
{"title":"Cache Point Selection and Transmissions Reduction using LSTM Neural Network","authors":"Malihe Bahekmat, Mohammad Hossein Yaghmaee Moghaddam","doi":"10.52547/jist.27279.11.42.123","DOIUrl":null,"url":null,"abstract":"Reliability of data transmission in wireless sensor networks (WSN) is very important in the case of high lost packet rate due to link problems or buffer congestion. In this regard, mechanisms such as middle cache points and congestion control can improve the performance of the reliability of transmission protocols when the packet is lost. On the other hand, the issue of energy consumption in this type of networks has become an important parameter in their reliability. In this paper, considering the energy constraints in the sensor nodes and the direct relationship between energy consumption and the number of transmissions made by the nodes, the system tries to reduce the number of transmissions needed to send a packet from source to destination as much as possible by optimal selection of the cache points and packet caching. In order to select the best cache points, the information extracted from the network behavior analysis by deep learning algorithm has been used. In the training phase, long-short term memory (LSTM) capabilities as an example of recurrent neural network (RNN) deep learning networks to learn network conditions. The results show that the proposed method works better in examining the evaluation criteria of transmission costs, end-to-end delays, cache use and throughput.","PeriodicalId":37681,"journal":{"name":"Journal of Information Systems and Telecommunication","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Systems and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/jist.27279.11.42.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Reliability of data transmission in wireless sensor networks (WSN) is very important in the case of high lost packet rate due to link problems or buffer congestion. In this regard, mechanisms such as middle cache points and congestion control can improve the performance of the reliability of transmission protocols when the packet is lost. On the other hand, the issue of energy consumption in this type of networks has become an important parameter in their reliability. In this paper, considering the energy constraints in the sensor nodes and the direct relationship between energy consumption and the number of transmissions made by the nodes, the system tries to reduce the number of transmissions needed to send a packet from source to destination as much as possible by optimal selection of the cache points and packet caching. In order to select the best cache points, the information extracted from the network behavior analysis by deep learning algorithm has been used. In the training phase, long-short term memory (LSTM) capabilities as an example of recurrent neural network (RNN) deep learning networks to learn network conditions. The results show that the proposed method works better in examining the evaluation criteria of transmission costs, end-to-end delays, cache use and throughput.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LSTM神经网络的缓存点选择与传输减少
在无线传感器网络中,由于链路问题或缓冲区拥塞导致丢包率高的情况下,数据传输的可靠性是非常重要的。因此,中间缓存点和拥塞控制等机制可以在丢包时提高传输协议的可靠性。另一方面,此类网络的能耗问题已成为影响其可靠性的一个重要参数。在本文中,考虑到传感器节点的能量约束以及节点能量消耗与传输次数的直接关系,系统通过优化缓存点和数据包缓存的选择,尽可能减少从源到目的发送数据包所需的传输次数。为了选择最佳缓存点,采用深度学习算法从网络行为分析中提取信息。在训练阶段,以长短期记忆(LSTM)能力为例,对递归神经网络(RNN)深度学习网络进行网络条件的学习。结果表明,该方法能较好地检验传输成本、端到端延迟、缓存使用和吞吐量的评估标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Information Systems and Telecommunication
Journal of Information Systems and Telecommunication Computer Science-Information Systems
CiteScore
0.80
自引率
0.00%
发文量
24
审稿时长
24 weeks
期刊介绍: This Journal will emphasize the context of the researches based on theoretical and practical implications of information Systems and Telecommunications. JIST aims to promote the study and knowledge investigation in the related fields. The Journal covers technical, economic, social, legal and historic aspects of the rapidly expanding worldwide communications and information industry. The journal aims to put new developments in all related areas into context, help readers broaden their knowledge and deepen their understanding of telecommunications policy and practice. JIST encourages submissions that reflect the wide and interdisciplinary nature of the subject and articles that integrate technological disciplines with social, contextual and management issues. JIST is planned to build particularly its reputation by publishing qualitative researches and it welcomes such papers. This journal aims to disseminate success stories, lessons learnt, and best practices captured by researchers in the related fields.
期刊最新文献
Computational Model for Image Processing in the Minds of People with Visual Agnosia using Fuzzy Cognitive Map Cache Point Selection and Transmissions Reduction using LSTM Neural Network Performance Analysis and Activity Deviation Discovery in Event Log Using Process Mining Tool for Hospital System Energy Efficient Cross Layer MAC Protocol for Wireless Sensor Networks in Remote Area Monitoring Applications DeepFake Detection using 3D-Xception Net with Discrete Fourier Transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1