A study of Factors Influencing Severe Accidents Associated with Children’s Product Usage through Logistic Regression Analysis

Pil Jun Yun, Ki Tae Kim
{"title":"A study of Factors Influencing Severe Accidents Associated with Children’s Product Usage through Logistic Regression Analysis","authors":"Pil Jun Yun, Ki Tae Kim","doi":"10.34139/jscs.2023.13.3.103","DOIUrl":null,"url":null,"abstract":"한국 전체 안전사고의 20% 이상 높은 비율을 차지하고 있는 어린이 관련 안전사고에는 어린이제품 사용에 따른 안전사고가 중요한 부분이다. 그러나, 어린이제품 사용에 따른 안전사고 발생 유형이나 요인 등에 대한 구체적인 연구결과는 부족한 실정이다. 본 연구에서는 중대사고 여부를 종속변수로 하여 어린이제품 연령 분류에 따라 어린이 전 연령, 영아(0~12개월), 유아(12~36개월), 어린이(36개월~13세)로 나눠 2018년부터 2022년까지 5년 동안 발생한 어린이제품에 의한 어린이 상해 데이터 22,200건을 표본으로 연령, 성별, 연도, 인증정보, 장소, 계절, 행동 등 7개의 사고 요인을 분석하였다. Logistic regression 분석 결과, 전 연령에서는 중대사고 발생 시 장소, 연도, 성별을 제외한 연령, 인증정보, 행동, 계절에서 중대사고 발생의 통계적 유의성을 확인하였다. 연령 분류에 따른 영아, 유아, 어린이 등 3개 모델에서는 영아는 행동만이 통계적 유의성을 보였으며, 유아와 어린이에서는 장소, 인증정보, 행동, 계절 등에서 통계적 유의성을 보였다. 다수의 사고 요인에서 발견된 중대사고 연관성은 어린이제품 사고 발생 시 중대사고에 영향을 끼칠 수 있는 사고 요인을 확인하는데 logisitic regression 분석이 유용한 모델임을 보여준다. 본 연구결과는 중대사고 예방을 위한 어린이 제품 사용 주의사항 표시, 예방 교육, 리스크평가 등 어린이 제품 안전 사용에 관련된 여러 정책을 결정함에 있어 과학적인 기본 통계자료로 활용될 수 있을 것이다.Child safety remains a paramount concern, constituting 20% of all safety incidents. Notably, accidents linked to children's product usage constitute a significant subset of these occurrences. However, comprehensive research elucidating the specific typologies and determinants of safety accidents originating from the utilization of children's products is deficient. In this study, we categorized children of various age groups infants (0 to 12 months), toddlers (12 months to 36 months), and children (36 months to 13 years) according to age-appropriate product classifications. We procured and analyzed a dataset encompassing 22,200 instances of child injuries attributable to children's products over a span of five years until 2022. The analysis scrutinized seven key accident factors, namely age, gender, year, certification status, location, season, and behavior. The result of logistic regression analysis unveiled several noteworthy findings. Across all age model, age, certification information, behavior, and season were statistically significant factors correlating with severe accidents, whereas place, year, and gender exhibited no such significance. Within the baby(~12month) model, solely behavior emerged as a statistically significant factor. Meanwhile, among infant(12~36month) and children(36month~13age), factors such as location, certification information, behavior, and season demonstrated statistical significance. Through the relationship between various accident factors, it was confirmed that logistic regression analysis is a useful model for identifying the causes of serious accidents related to children's products. The results of this study can be used to establish policies to improve the safety of children's product use. These policies include designing product usage precautions to prevent serious accidents, promoting prevention education, and comprehensive risk assessment. Accordingly, the results of this study are expected to play an important role in providing a scientific basis for various policies and initiatives for the safety of children's product use.","PeriodicalId":487765,"journal":{"name":"표준인증안전학회지","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"표준인증안전학회지","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34139/jscs.2023.13.3.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

한국 전체 안전사고의 20% 이상 높은 비율을 차지하고 있는 어린이 관련 안전사고에는 어린이제품 사용에 따른 안전사고가 중요한 부분이다. 그러나, 어린이제품 사용에 따른 안전사고 발생 유형이나 요인 등에 대한 구체적인 연구결과는 부족한 실정이다. 본 연구에서는 중대사고 여부를 종속변수로 하여 어린이제품 연령 분류에 따라 어린이 전 연령, 영아(0~12개월), 유아(12~36개월), 어린이(36개월~13세)로 나눠 2018년부터 2022년까지 5년 동안 발생한 어린이제품에 의한 어린이 상해 데이터 22,200건을 표본으로 연령, 성별, 연도, 인증정보, 장소, 계절, 행동 등 7개의 사고 요인을 분석하였다. Logistic regression 분석 결과, 전 연령에서는 중대사고 발생 시 장소, 연도, 성별을 제외한 연령, 인증정보, 행동, 계절에서 중대사고 발생의 통계적 유의성을 확인하였다. 연령 분류에 따른 영아, 유아, 어린이 등 3개 모델에서는 영아는 행동만이 통계적 유의성을 보였으며, 유아와 어린이에서는 장소, 인증정보, 행동, 계절 등에서 통계적 유의성을 보였다. 다수의 사고 요인에서 발견된 중대사고 연관성은 어린이제품 사고 발생 시 중대사고에 영향을 끼칠 수 있는 사고 요인을 확인하는데 logisitic regression 분석이 유용한 모델임을 보여준다. 본 연구결과는 중대사고 예방을 위한 어린이 제품 사용 주의사항 표시, 예방 교육, 리스크평가 등 어린이 제품 안전 사용에 관련된 여러 정책을 결정함에 있어 과학적인 기본 통계자료로 활용될 수 있을 것이다.Child safety remains a paramount concern, constituting 20% of all safety incidents. Notably, accidents linked to children's product usage constitute a significant subset of these occurrences. However, comprehensive research elucidating the specific typologies and determinants of safety accidents originating from the utilization of children's products is deficient. In this study, we categorized children of various age groups infants (0 to 12 months), toddlers (12 months to 36 months), and children (36 months to 13 years) according to age-appropriate product classifications. We procured and analyzed a dataset encompassing 22,200 instances of child injuries attributable to children's products over a span of five years until 2022. The analysis scrutinized seven key accident factors, namely age, gender, year, certification status, location, season, and behavior. The result of logistic regression analysis unveiled several noteworthy findings. Across all age model, age, certification information, behavior, and season were statistically significant factors correlating with severe accidents, whereas place, year, and gender exhibited no such significance. Within the baby(~12month) model, solely behavior emerged as a statistically significant factor. Meanwhile, among infant(12~36month) and children(36month~13age), factors such as location, certification information, behavior, and season demonstrated statistical significance. Through the relationship between various accident factors, it was confirmed that logistic regression analysis is a useful model for identifying the causes of serious accidents related to children's products. The results of this study can be used to establish policies to improve the safety of children's product use. These policies include designing product usage precautions to prevent serious accidents, promoting prevention education, and comprehensive risk assessment. Accordingly, the results of this study are expected to play an important role in providing a scientific basis for various policies and initiatives for the safety of children's product use.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Logistic回归分析的儿童产品使用严重事故影响因素研究
在韩国全体安全事故中占20%以上的儿童相关安全事故中,使用儿童产品引起的安全事故是非常重要的部分。但是,对使用儿童产品导致的安全事故发生类型和因素等的具体研究结果却不足。本研究中对重大事故为因变量,儿童产品是否按年龄分类前年龄儿童、婴儿(0 ~ 12个月)、幼儿(12 ~ 36个月)、儿童(分为36个月至13岁),2018年至2022年五年发生的儿童产品的儿童伤害数据22、200件标本的年龄,性别,年度认证信息、场所、季节行动等7个事故因素。Logistic regression的分析结果显示,在所有年龄中,重大事故发生时,除地点、年份、性别外,在年龄、认证信息、行动和季节中,重大事故发生的统计显著性。根据年龄分类的婴儿、幼儿、儿童等3种模型中,婴儿只有行动才显示出统计上的显著性,幼儿和儿童则在场所、认证信息、行动、季节等方面显示出统计上的显著性。在多数事故因素中发现的重大事故关联性表明,在儿童产品事故发生时,logisitic regression分析是一种有用的模型。本研究结果在决定预防重大事故的儿童产品使用注意事项标识、预防教育、风险评价等有关儿童产品安全使用的各种政策时,可以作为科学的基本统计资料使用。Child safety remains a paramount concern, constituting 20% of all safety incidents。Notably, accidents linked to children's product usage constitute a significant subset of these occurrences。However, comprehensive research elucidating the specific typologies and determinants of safety accidents originating from the utilization of children's products is deficient。In this study, we categorized children of various age groups infants (0 to 12 months), toddlers (12 months to 36 months),and children (36 months to 13 years) according to age-appropriate product classifications。We procured and analyzed a dataset encompassing 22,200 instances of child injuries attributable to children's products over a span of five years until 2022。The analysis scrutinized seven key accident factors, namely age, gender, year, certification status, location, season, and behavior。The result of logistic regression analysis unveiled several noteworthy findings。Across all age model, age, certification information, behavior, and season were statistically significant factors correlating with severe accidents, whereas place, year,and gender exhibited no such significanceWithin the baby(~12month) model, solely behavior emerged as a statistically significant factor。Meanwhile, among infant(12 - 36month) and children(36month - 13age), factors such as location, certification information, behavior, and season demonstrated statistical significance。Through the relationship between various accident factorsit was confirmed that logistic regression analysis a useful model for identifying the causes of serious accidents related to children's products。The results of this study can be used to establish policies to improve The safety of children's product use。These policies include designing product usage precautions to prevent serious accidents, promoting prevention education, and comprehensive risk assessment。Accordingly, the results of this study are expected to play an important role in providing a scientific basis for various policies and initiatives for the safety of children's product use。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Technical Proposal of the EV Charging Spaces Zoning Guidelines for Disabled Drivers A Study on the Standardization of Tensile Strength Measurement Environment and Methods of Hydrogel Contact Lens An Analysis of the Effect of Excellent Logistics Company Certification System and External Environmental Factors on Quantitative Growth of the Logistics Industry A study of Factors Influencing Severe Accidents Associated with Children’s Product Usage through Logistic Regression Analysis A Study on the Role of Cooperation Organization for Standards Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1