Dynamic Mode Decomposition for data-driven analysis and reduced-order modelling of E×B plasmas: I. Extraction of spatiotemporally coherent patterns

Farbod Faraji, Maryam Reza, Aaron Knoll, J Nathan Kutz
{"title":"Dynamic Mode Decomposition for data-driven analysis and reduced-order modelling of E×B plasmas: I. Extraction of spatiotemporally coherent patterns","authors":"Farbod Faraji, Maryam Reza, Aaron Knoll, J Nathan Kutz","doi":"10.1088/1361-6463/ad0910","DOIUrl":null,"url":null,"abstract":"Abstract The advent of data-driven/machine-learning based methods and the increase in data available from high-fidelity simulations and experiments has opened new pathways toward realizing reduced-order models for plasma systems that can aid in explaining the complex, multi-dimensional phenomena and enable forecasting and prediction of the systems’ behavior. In this two-part article, we evaluate the utility and the generalizability of the dynamic mode decomposition (DMD) algorithm for data-driven analysis and reduced-order modeling of plasma dynamics in cross-field E × B configurations. The DMD algorithm is an interpretable data-driven method that finds a best-fit linear model describing the time evolution of spatiotemporally coherent structures (patterns) in data. We have applied the DMD to extensive high-fidelity datasets generated using a particle-in-cell (PIC) code based on the cost-efficient reduced-order PIC scheme. In this part, we first provide an overview of the concept of DMD and its underpinning proper orthogonal and singular value decomposition methods. Two of the main DMD variants are next introduced. We then present and discuss the results of the DMD application in terms of the identification and extraction of the dominant spatiotemporal modes from high-fidelity data over a range of simulation conditions. We demonstrate that the DMD variant based on variable projection optimization (OPT-DMD) outperforms the basic DMD method in identification of the modes underlying the data, leading to notably more reliable reconstruction of the ground-truth. Furthermore, we show in multiple test cases that the discrete frequency spectrum of OPT-DMD-extracted modes is consistent with the temporal spectrum from the fast Fourier transform of the data. This observation implies that the OPT-DMD augments the conventional spectral analyses by being able to uniquely reveal the spatial structure of the dominant modes in the frequency spectra, thus, yielding more accessible, comprehensive information on the spatiotemporal characteristics of the plasma phenomena.","PeriodicalId":16833,"journal":{"name":"Journal of Physics D","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad0910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract The advent of data-driven/machine-learning based methods and the increase in data available from high-fidelity simulations and experiments has opened new pathways toward realizing reduced-order models for plasma systems that can aid in explaining the complex, multi-dimensional phenomena and enable forecasting and prediction of the systems’ behavior. In this two-part article, we evaluate the utility and the generalizability of the dynamic mode decomposition (DMD) algorithm for data-driven analysis and reduced-order modeling of plasma dynamics in cross-field E × B configurations. The DMD algorithm is an interpretable data-driven method that finds a best-fit linear model describing the time evolution of spatiotemporally coherent structures (patterns) in data. We have applied the DMD to extensive high-fidelity datasets generated using a particle-in-cell (PIC) code based on the cost-efficient reduced-order PIC scheme. In this part, we first provide an overview of the concept of DMD and its underpinning proper orthogonal and singular value decomposition methods. Two of the main DMD variants are next introduced. We then present and discuss the results of the DMD application in terms of the identification and extraction of the dominant spatiotemporal modes from high-fidelity data over a range of simulation conditions. We demonstrate that the DMD variant based on variable projection optimization (OPT-DMD) outperforms the basic DMD method in identification of the modes underlying the data, leading to notably more reliable reconstruction of the ground-truth. Furthermore, we show in multiple test cases that the discrete frequency spectrum of OPT-DMD-extracted modes is consistent with the temporal spectrum from the fast Fourier transform of the data. This observation implies that the OPT-DMD augments the conventional spectral analyses by being able to uniquely reveal the spatial structure of the dominant modes in the frequency spectra, thus, yielding more accessible, comprehensive information on the spatiotemporal characteristics of the plasma phenomena.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
E×B等离子体数据驱动分析和降阶建模的动态模式分解:1 .时空相干模式的提取
数据驱动/基于机器学习的方法的出现,以及高保真仿真和实验中可用数据的增加,为实现等离子体系统的降阶模型开辟了新的途径,这些模型有助于解释复杂的、多维的现象,并能够预测和预测系统的行为。在这篇由两部分组成的文章中,我们评估了动态模式分解(DMD)算法在数据驱动分析和跨场E × B配置等离子体动力学降阶建模中的实用性和泛化性。DMD算法是一种可解释的数据驱动方法,它找到描述数据中时空相干结构(模式)的时间演变的最佳拟合线性模型。我们已经将DMD应用于广泛的高保真数据集,该数据集使用基于成本效益的降阶PIC方案的细胞内粒子(PIC)代码生成。在这一部分中,我们首先概述了DMD的概念及其基础的正交和奇异值分解方法。接下来介绍两种主要的DMD变体。然后,我们在一系列模拟条件下从高保真数据中识别和提取主要时空模式方面展示并讨论了DMD应用的结果。我们证明了基于可变投影优化(OPT-DMD)的DMD变体在识别数据底层模式方面优于基本DMD方法,导致更可靠的地面真值重建。此外,我们在多个测试案例中表明,opt - dmd提取的模式的离散频谱与数据的快速傅里叶变换的时间频谱是一致的。这一观察结果表明,OPT-DMD通过能够独特地揭示频谱中主要模式的空间结构,从而增强了传统的频谱分析,从而提供了关于等离子体现象时空特征的更容易获取的全面信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The study of N-polar GaN/InAlN MOS-HEMT and T-gate HEMT biosensors Magnetic levitation of nanoscale materials: the critical role of effective density Ammonia Cracking for Hydrogen Production using a Microwave Argon Plasma Jet UV irradiation assisted low-temperature process for thin film transistor performance improvement of praseodymium-doped indium zinc oxide Dynamic Mode Decomposition for data-driven analysis and reduced-order modelling of E×B plasmas: I. Extraction of spatiotemporally coherent patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1