Gain and loss induced higher-order exceptional points in a non-Hermitian electrical circuit

Xizhou Shen, Keyu Pan, Xiumei Wang, Hengxuan Jiang, Xingping Zhou
{"title":"Gain and loss induced higher-order exceptional points in a non-Hermitian electrical circuit","authors":"Xizhou Shen, Keyu Pan, Xiumei Wang, Hengxuan Jiang, Xingping Zhou","doi":"10.1088/1361-6463/ad0989","DOIUrl":null,"url":null,"abstract":"Abstract Non-Hermitian Hamiltonians effectively describing the physics of open systems have become an important tool in various physical platforms, such as photonics, mechanical systems, and electric circuits. The study of non-Hermitian states in electric circuits is developing rapidly recently and forming the field of topoelectrical circuits. Here, we report on the theoretical realization of a higher-order exceptional points (EPs) topological circuit induced by gain and loss. It is shown that, by tuning the value of the positive and negative resistors in the circuit, EPs can collide and merge leading to higher-order singularities. We observe the different energy-difference conserving dynamics near the EPs and the enhanced sensitivity at higher-order EPs. Our results show a way to get higher sensitivity in a non-Hermitian electrical circuit.","PeriodicalId":16833,"journal":{"name":"Journal of Physics D","volume":"64 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad0989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Non-Hermitian Hamiltonians effectively describing the physics of open systems have become an important tool in various physical platforms, such as photonics, mechanical systems, and electric circuits. The study of non-Hermitian states in electric circuits is developing rapidly recently and forming the field of topoelectrical circuits. Here, we report on the theoretical realization of a higher-order exceptional points (EPs) topological circuit induced by gain and loss. It is shown that, by tuning the value of the positive and negative resistors in the circuit, EPs can collide and merge leading to higher-order singularities. We observe the different energy-difference conserving dynamics near the EPs and the enhanced sensitivity at higher-order EPs. Our results show a way to get higher sensitivity in a non-Hermitian electrical circuit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增益和损耗在非厄米电路中引起高阶异常点
有效描述开放系统物理特性的非厄米哈密顿量已成为光子学、机械系统和电路等各种物理平台的重要工具。电路中的非厄米态研究近年来发展迅速,形成了拓扑电路领域。在这里,我们报告了由增益和损耗引起的高阶异常点(EPs)拓扑电路的理论实现。结果表明,通过调整电路中正、负电阻的值,EPs可以发生碰撞和合并,从而产生高阶奇点。我们观察到了不同的能差守恒动力学,以及在高阶能差处的灵敏度增强。我们的结果显示了一种在非厄米电路中获得更高灵敏度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The study of N-polar GaN/InAlN MOS-HEMT and T-gate HEMT biosensors Magnetic levitation of nanoscale materials: the critical role of effective density Ammonia Cracking for Hydrogen Production using a Microwave Argon Plasma Jet UV irradiation assisted low-temperature process for thin film transistor performance improvement of praseodymium-doped indium zinc oxide Dynamic Mode Decomposition for data-driven analysis and reduced-order modelling of E×B plasmas: I. Extraction of spatiotemporally coherent patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1