{"title":"RUL Prognostics","authors":"Junhyun Byun, Suhong Min, Jihoon Kang","doi":"10.36001/ijphm.2023.v14i2.3528","DOIUrl":null,"url":null,"abstract":"With the rising complexity of manufacturing processes, resulting from rapid industrial development, the utilization of remaining useful lifecycle (RUL) prediction, based on failure physics and traditional reliability, has remained limited. Although data-driven approaches of RUL prediction were developed using machine learning algorithms, uncertainty-induced challenges have emerged, such as sensor noise and modeling error. To address these uncertainty-induced problems, this study proposes a stochastic ensemble-modeling concept for improving the RUL prediction result. The proposed ensemble model combines artificial degradation patterns and fitness weights, which incorporate formulas reflecting failure patterns and various reliability function data with the observed degradation factor. Furthermore, a recursive Bayesian updating technique, reflecting the difference between expected and observed remaining life sequentially, was leveraged to reduce the prediction uncertainty. Moreover, we comparatively studied the predictive performance of the proposed model (recursive Bayesian ensemble model) against an existing baseline method (exponentially weighted linear regression model). Through simulation and case datasets, this experiment demonstrated the robustness and utility of the proposed algorithm.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2023.v14i2.3528","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the rising complexity of manufacturing processes, resulting from rapid industrial development, the utilization of remaining useful lifecycle (RUL) prediction, based on failure physics and traditional reliability, has remained limited. Although data-driven approaches of RUL prediction were developed using machine learning algorithms, uncertainty-induced challenges have emerged, such as sensor noise and modeling error. To address these uncertainty-induced problems, this study proposes a stochastic ensemble-modeling concept for improving the RUL prediction result. The proposed ensemble model combines artificial degradation patterns and fitness weights, which incorporate formulas reflecting failure patterns and various reliability function data with the observed degradation factor. Furthermore, a recursive Bayesian updating technique, reflecting the difference between expected and observed remaining life sequentially, was leveraged to reduce the prediction uncertainty. Moreover, we comparatively studied the predictive performance of the proposed model (recursive Bayesian ensemble model) against an existing baseline method (exponentially weighted linear regression model). Through simulation and case datasets, this experiment demonstrated the robustness and utility of the proposed algorithm.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.