ANFIS-Based QSRR Modelling for Kovats Retention Index Prediction in Gas Chromatography

Rinaldi Idroes, Teuku Rizky Noviandy, Aga Maulana, Rivansyah Suhendra, Novi Reandy Sasmita, Muslem Muslem, Ghazi Mauer Idroes, Raudhatul Jannah, Razief Perucha Fauzie Afidh, Irvanizam Irvanizam
{"title":"ANFIS-Based QSRR Modelling for Kovats Retention Index Prediction in Gas Chromatography","authors":"Rinaldi Idroes, Teuku Rizky Noviandy, Aga Maulana, Rivansyah Suhendra, Novi Reandy Sasmita, Muslem Muslem, Ghazi Mauer Idroes, Raudhatul Jannah, Razief Perucha Fauzie Afidh, Irvanizam Irvanizam","doi":"10.60084/ijds.v1i1.73","DOIUrl":null,"url":null,"abstract":"This study aims to evaluate the implementation and effectiveness of the Adaptive Neuro-Fuzzy Inference System (ANFIS) based Quantitative Structure Retention Relationship (QSRR) to predict the Kovats retention index of compounds in gas chromatography. The model was trained using 340 essential oil compounds and their molecular descriptors. The evaluation of the ANFIS models revealed promising results, achieving an R2 of 0.974, an RMSE of 48.12, and an MAPE of 3.3% on the testing set. These findings highlight the ANFIS approach as remarkably accurate in its predictive capacity for determining the Kovats retention index in the context of gas chromatography. This study provides valuable perspectives on the efficiency of retention index prediction through ANFIS-based QSRR methods and the potential practicality in compound analysis and chromatographic optimization.","PeriodicalId":486036,"journal":{"name":"Infolitika Journal of Data Science","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infolitika Journal of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60084/ijds.v1i1.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study aims to evaluate the implementation and effectiveness of the Adaptive Neuro-Fuzzy Inference System (ANFIS) based Quantitative Structure Retention Relationship (QSRR) to predict the Kovats retention index of compounds in gas chromatography. The model was trained using 340 essential oil compounds and their molecular descriptors. The evaluation of the ANFIS models revealed promising results, achieving an R2 of 0.974, an RMSE of 48.12, and an MAPE of 3.3% on the testing set. These findings highlight the ANFIS approach as remarkably accurate in its predictive capacity for determining the Kovats retention index in the context of gas chromatography. This study provides valuable perspectives on the efficiency of retention index prediction through ANFIS-based QSRR methods and the potential practicality in compound analysis and chromatographic optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于anfiss的气相色谱中Kovats保留指数预测的QSRR模型
本研究旨在评价基于自适应神经模糊推理系统(ANFIS)的定量结构保留关系(QSRR)在气相色谱中预测化合物Kovats保留指数的实现和有效性。该模型使用340种精油化合物及其分子描述符进行训练。对ANFIS模型的评价显示出良好的结果,在测试集上实现了R2为0.974,RMSE为48.12,MAPE为3.3%。这些发现突出了ANFIS方法在确定气相色谱中Kovats保留指数的预测能力方面非常准确。该研究为基于anfiss的QSRR方法预测保留指数的效率以及在化合物分析和色谱优化中的潜在实用性提供了有价值的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maternal and Child Healthcare Services in Aceh Province, Indonesia: A Correlation and Clustering Analysis in Statistics Ensemble Machine Learning Approach for Quantitative Structure Activity Relationship Based Drug Discovery: A Review Implementation of Hybrid CNN-XGBoost Method for Leukemia Detection Problem ANFIS-Based QSRR Modelling for Kovats Retention Index Prediction in Gas Chromatography Machine Learning Approach for Diabetes Detection Using Fine-Tuned XGBoost Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1