Ensemble Machine Learning Approach for Quantitative Structure Activity Relationship Based Drug Discovery: A Review

Teuku Rizky Noviandy, Aga Maulana, Ghazi Mauer Idroes, Talha Bin Emran, Trina Ekawati Tallei, Zuchra Helwani, Rinaldi Idroes
{"title":"Ensemble Machine Learning Approach for Quantitative Structure Activity Relationship Based Drug Discovery: A Review","authors":"Teuku Rizky Noviandy, Aga Maulana, Ghazi Mauer Idroes, Talha Bin Emran, Trina Ekawati Tallei, Zuchra Helwani, Rinaldi Idroes","doi":"10.60084/ijds.v1i1.91","DOIUrl":null,"url":null,"abstract":"This comprehensive review explores the pivotal role of ensemble machine learning techniques in Quantitative Structure-Activity Relationship (QSAR) modeling for drug discovery. It emphasizes the significance of accurate QSAR models in streamlining candidate compound selection and highlights how ensemble methods, including AdaBoost, Gradient Boosting, Random Forest, Extra Trees, XGBoost, LightGBM, and CatBoost, effectively address challenges such as overfitting and noisy data. The review presents recent applications of ensemble learning in both classification and regression tasks within QSAR, showcasing the exceptional predictive accuracy of these techniques across diverse datasets and target properties. It also discusses the key challenges and considerations in ensemble QSAR modeling, including data quality, model selection, computational resources, and overfitting. The review outlines future directions in ensemble QSAR modeling, including the integration of multi-modal data, explainability, handling imbalanced data, automation, and personalized medicine applications while emphasizing the need for ethical and regulatory guidelines in this evolving field.","PeriodicalId":486036,"journal":{"name":"Infolitika Journal of Data Science","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infolitika Journal of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60084/ijds.v1i1.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This comprehensive review explores the pivotal role of ensemble machine learning techniques in Quantitative Structure-Activity Relationship (QSAR) modeling for drug discovery. It emphasizes the significance of accurate QSAR models in streamlining candidate compound selection and highlights how ensemble methods, including AdaBoost, Gradient Boosting, Random Forest, Extra Trees, XGBoost, LightGBM, and CatBoost, effectively address challenges such as overfitting and noisy data. The review presents recent applications of ensemble learning in both classification and regression tasks within QSAR, showcasing the exceptional predictive accuracy of these techniques across diverse datasets and target properties. It also discusses the key challenges and considerations in ensemble QSAR modeling, including data quality, model selection, computational resources, and overfitting. The review outlines future directions in ensemble QSAR modeling, including the integration of multi-modal data, explainability, handling imbalanced data, automation, and personalized medicine applications while emphasizing the need for ethical and regulatory guidelines in this evolving field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于定量结构活性关系的药物发现集成机器学习方法综述
这篇综合综述探讨了集成机器学习技术在药物发现定量结构-活性关系(QSAR)建模中的关键作用。它强调了精确的QSAR模型在简化候选化合物选择中的重要性,并强调了包括AdaBoost、Gradient Boosting、Random Forest、Extra Trees、XGBoost、LightGBM和CatBoost在内的集成方法如何有效地解决过拟合和噪声数据等挑战。本文介绍了集成学习在QSAR分类和回归任务中的最新应用,展示了这些技术在不同数据集和目标属性上的卓越预测准确性。它还讨论了集成QSAR建模中的关键挑战和注意事项,包括数据质量、模型选择、计算资源和过拟合。综述概述了集成QSAR建模的未来方向,包括多模态数据的集成、可解释性、处理不平衡数据、自动化和个性化医学应用,同时强调了在这一不断发展的领域需要伦理和监管指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maternal and Child Healthcare Services in Aceh Province, Indonesia: A Correlation and Clustering Analysis in Statistics Ensemble Machine Learning Approach for Quantitative Structure Activity Relationship Based Drug Discovery: A Review Implementation of Hybrid CNN-XGBoost Method for Leukemia Detection Problem ANFIS-Based QSRR Modelling for Kovats Retention Index Prediction in Gas Chromatography Machine Learning Approach for Diabetes Detection Using Fine-Tuned XGBoost Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1