Implementation of Hybrid CNN-XGBoost Method for Leukemia Detection Problem

Taufiq Hidayat, Edrian Hadinata, Irfan Sudahri Damanik, Zakial Vikki, Irvanizam Irvanizam
{"title":"Implementation of Hybrid CNN-XGBoost Method for Leukemia Detection Problem","authors":"Taufiq Hidayat, Edrian Hadinata, Irfan Sudahri Damanik, Zakial Vikki, Irvanizam Irvanizam","doi":"10.60084/ijds.v1i1.87","DOIUrl":null,"url":null,"abstract":"Leukemia is a blood cancer in which blood cells become malignant and uncontrolled. It can cause damage to the function of the body's organs. Several machine learning methods have been used to automatically detect biomedical images, including blood cell images. In this study, we utilized a hybrid machine learning method, called a hybrid Convolutional Neural Network-eXtreme Gradient Boosting (CNN-XGBoost) method to detect leukemia in blood cells. The hybrid method combines two machine learning methods. We use CNN as the basic classifier and XGBoost as the main classification method. The aim of this methodology was to assess whether incorporating the basic classification method would lead to an enhancement in the performance of the main classification model. The experimental findings demonstrated that the utilization of XGBoost as the main classifier led to a marginal increase in accuracy, elevating it from 85.32% to 85.43% compared to the basic CNN classification. This research highlights the potential of hybrid machine learning approaches in biomedical image analysis and their role in advancing the early diagnosis of leukemia and potentially other medical conditions.","PeriodicalId":486036,"journal":{"name":"Infolitika Journal of Data Science","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infolitika Journal of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60084/ijds.v1i1.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Leukemia is a blood cancer in which blood cells become malignant and uncontrolled. It can cause damage to the function of the body's organs. Several machine learning methods have been used to automatically detect biomedical images, including blood cell images. In this study, we utilized a hybrid machine learning method, called a hybrid Convolutional Neural Network-eXtreme Gradient Boosting (CNN-XGBoost) method to detect leukemia in blood cells. The hybrid method combines two machine learning methods. We use CNN as the basic classifier and XGBoost as the main classification method. The aim of this methodology was to assess whether incorporating the basic classification method would lead to an enhancement in the performance of the main classification model. The experimental findings demonstrated that the utilization of XGBoost as the main classifier led to a marginal increase in accuracy, elevating it from 85.32% to 85.43% compared to the basic CNN classification. This research highlights the potential of hybrid machine learning approaches in biomedical image analysis and their role in advancing the early diagnosis of leukemia and potentially other medical conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合CNN-XGBoost方法在白血病检测中的实现
白血病是一种血癌,患者的血细胞变得恶性且无法控制。它会对身体器官的功能造成损害。几种机器学习方法已被用于自动检测生物医学图像,包括血细胞图像。在这项研究中,我们使用了一种混合机器学习方法,称为混合卷积神经网络-极端梯度增强(CNN-XGBoost)方法来检测血细胞中的白血病。混合方法结合了两种机器学习方法。我们使用CNN作为基本分类器,XGBoost作为主要分类方法。该方法的目的是评估纳入基本分类方法是否会提高主要分类模型的性能。实验结果表明,使用XGBoost作为主分类器,与基本的CNN分类相比,准确率从85.32%提高到85.43%,略有提高。这项研究强调了混合机器学习方法在生物医学图像分析中的潜力,以及它们在促进白血病和其他潜在医疗条件的早期诊断方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maternal and Child Healthcare Services in Aceh Province, Indonesia: A Correlation and Clustering Analysis in Statistics Ensemble Machine Learning Approach for Quantitative Structure Activity Relationship Based Drug Discovery: A Review Implementation of Hybrid CNN-XGBoost Method for Leukemia Detection Problem ANFIS-Based QSRR Modelling for Kovats Retention Index Prediction in Gas Chromatography Machine Learning Approach for Diabetes Detection Using Fine-Tuned XGBoost Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1