Prediction of maximum scour depth in river bends by the Stacking model

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2023-11-10 DOI:10.2166/hydro.2023.177
Junfeng Chen, Xiaoquan Zhou, Lirong Xiao, Yuhang Huang
{"title":"Prediction of maximum scour depth in river bends by the Stacking model","authors":"Junfeng Chen, Xiaoquan Zhou, Lirong Xiao, Yuhang Huang","doi":"10.2166/hydro.2023.177","DOIUrl":null,"url":null,"abstract":"Abstract The accurate prediction of maximum erosion depth in riverbeds is crucial for early protection of bank slopes. In this study, K-means clustering analysis was used for outlier identification and feature selection, resulting in Plan 1 with six influential features. Plan 2 included features selected by existing methods. Regression models were built using Support Vector Regression, Random Forest Regression (RF Regression), and eXtreme Gradient Boosting on sample data from Plan 1 and Plan 2. To enhance accuracy, a Stacking method with a feed-forward neural network was introduced as the meta-learner. Model performance was evaluated using root mean squared error, mean absolute error, mean absolute percentage error, and R2 coefficients. The results demonstrate that the performance of the three models in Plan 1 outperformed that of Plan 2, with improvements in R2 values of 0.0025, 0.0423, and 0.0205, respectively. Among the three regression models in Plan 1, RF Regression performs the best with an R2 value of 0.9149 but still lower than the 0.9389 achieved by the Stacking fusion model. Compared to the existing formulas, the Stacking model exhibits superior predictive performance. This study verifies the effectiveness of combining clustering analysis, feature selection, and the Stacking method in predicting maximum scour depth in bends, providing a novel approach for bank protection design.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/hydro.2023.177","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The accurate prediction of maximum erosion depth in riverbeds is crucial for early protection of bank slopes. In this study, K-means clustering analysis was used for outlier identification and feature selection, resulting in Plan 1 with six influential features. Plan 2 included features selected by existing methods. Regression models were built using Support Vector Regression, Random Forest Regression (RF Regression), and eXtreme Gradient Boosting on sample data from Plan 1 and Plan 2. To enhance accuracy, a Stacking method with a feed-forward neural network was introduced as the meta-learner. Model performance was evaluated using root mean squared error, mean absolute error, mean absolute percentage error, and R2 coefficients. The results demonstrate that the performance of the three models in Plan 1 outperformed that of Plan 2, with improvements in R2 values of 0.0025, 0.0423, and 0.0205, respectively. Among the three regression models in Plan 1, RF Regression performs the best with an R2 value of 0.9149 but still lower than the 0.9389 achieved by the Stacking fusion model. Compared to the existing formulas, the Stacking model exhibits superior predictive performance. This study verifies the effectiveness of combining clustering analysis, feature selection, and the Stacking method in predicting maximum scour depth in bends, providing a novel approach for bank protection design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用堆积模型预测河湾最大冲刷深度
准确预测河床最大侵蚀深度对岸坡的早期防护至关重要。本研究采用K-means聚类分析进行离群点识别和特征选择,得到了包含6个影响特征的Plan 1。方案2包括由现有方法选择的功能。采用支持向量回归、随机森林回归(RF Regression)和极端梯度增强(eXtreme Gradient Boosting)对计划1和计划2的样本数据建立回归模型。为了提高准确率,引入了一种前馈神经网络叠加方法作为元学习器。使用均方根误差、平均绝对误差、平均绝对百分比误差和R2系数来评估模型的性能。结果表明,方案1中三个模型的性能优于方案2,R2分别提高了0.0025、0.0423和0.0205。在方案1的三种回归模型中,RF regression表现最好,R2值为0.9149,但仍低于Stacking融合模型的0.9389。与已有的预测公式相比,叠加模型具有更好的预测性能。该研究验证了聚类分析、特征选择和堆垛法相结合预测弯道最大冲刷深度的有效性,为堤防设计提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
Sensitivity of model-based leakage localisation in water distribution networks to water demand sampling rates and spatio-temporal data gaps Efficient functioning of a sewer system: application of novel hybrid machine learning methods for the prediction of particle Froude number Quantile mapping technique for enhancing satellite-derived precipitation data in hydrological modelling: a case study of the Lam River Basin, Vietnam Development and application of a hybrid artificial neural network model for simulating future stream flows in catchments with limited in situ observed data Formation of meandering streams in a young floodplain within the Yarlung Tsangpo Grand Canyon in the Tibetan Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1