Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2024-06-01 DOI:10.2166/hydro.2024.024
Yu Shao, Jiarui Chen, Tuqiao Zhang, Tingchao Yu, Shipeng Chu
{"title":"Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism","authors":"Yu Shao, Jiarui Chen, Tuqiao Zhang, Tingchao Yu, Shipeng Chu","doi":"10.2166/hydro.2024.024","DOIUrl":null,"url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.024/1/m_hydro-d-24-00024gf01.png?Expires=1722781167&amp;Signature=N5VQw4Eum39XC3hFS958ezRAf9KJFwtstGhnPb93-s4JPZvrMlAPMgNyRgprnDW2zp-TETZTkv1aj5uZoTJ--w1wr9uCKQvy1Mvnl1HnDXAD8RFz2FbiobJRrjl-Zw1~Wgh5z7fcRMrchkm6ER6AJt44oQFPz1Yv-wWW2Zo5POJ1E14-KwxqrUEZFFCMBnNLKaCxgNTLjmBKV8hT4FxVI2K9giHdHunJnLu0Y1NqZNZekWgOu5zXhxlEnSD~MF1aC~5L-W2LblDHQxVvmdhlBHg~H2qtcW8ByXLpnoKkCDjEfxxRK8xl4A9NmTPIUBQZCoj8MbJ3b7DouJMB6pSGnQ__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-24-00024gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.024/1/m_hydro-d-24-00024gf01.png?Expires=1722781167&amp;Signature=N5VQw4Eum39XC3hFS958ezRAf9KJFwtstGhnPb93-s4JPZvrMlAPMgNyRgprnDW2zp-TETZTkv1aj5uZoTJ--w1wr9uCKQvy1Mvnl1HnDXAD8RFz2FbiobJRrjl-Zw1~Wgh5z7fcRMrchkm6ER6AJt44oQFPz1Yv-wWW2Zo5POJ1E14-KwxqrUEZFFCMBnNLKaCxgNTLjmBKV8hT4FxVI2K9giHdHunJnLu0Y1NqZNZekWgOu5zXhxlEnSD~MF1aC~5L-W2LblDHQxVvmdhlBHg~H2qtcW8ByXLpnoKkCDjEfxxRK8xl4A9NmTPIUBQZCoj8MbJ3b7DouJMB6pSGnQ__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.024/1/m_hydro-d-24-00024gf01.png?Expires=1722781167&amp;Signature=N5VQw4Eum39XC3hFS958ezRAf9KJFwtstGhnPb93-s4JPZvrMlAPMgNyRgprnDW2zp-TETZTkv1aj5uZoTJ--w1wr9uCKQvy1Mvnl1HnDXAD8RFz2FbiobJRrjl-Zw1~Wgh5z7fcRMrchkm6ER6AJt44oQFPz1Yv-wWW2Zo5POJ1E14-KwxqrUEZFFCMBnNLKaCxgNTLjmBKV8hT4FxVI2K9giHdHunJnLu0Y1NqZNZekWgOu5zXhxlEnSD~MF1aC~5L-W2LblDHQxVvmdhlBHg~H2qtcW8ByXLpnoKkCDjEfxxRK8xl4A9NmTPIUBQZCoj8MbJ3b7DouJMB6pSGnQ__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-24-00024gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.024/1/m_hydro-d-24-00024gf01.png?Expires=1722781167&amp;Signature=N5VQw4Eum39XC3hFS958ezRAf9KJFwtstGhnPb93-s4JPZvrMlAPMgNyRgprnDW2zp-TETZTkv1aj5uZoTJ--w1wr9uCKQvy1Mvnl1HnDXAD8RFz2FbiobJRrjl-Zw1~Wgh5z7fcRMrchkm6ER6AJt44oQFPz1Yv-wWW2Zo5POJ1E14-KwxqrUEZFFCMBnNLKaCxgNTLjmBKV8hT4FxVI2K9giHdHunJnLu0Y1NqZNZekWgOu5zXhxlEnSD~MF1aC~5L-W2LblDHQxVvmdhlBHg~H2qtcW8ByXLpnoKkCDjEfxxRK8xl4A9NmTPIUBQZCoj8MbJ3b7DouJMB6pSGnQ__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Urban floods pose a significant threat to human communities, making its prediction essential for comprehensive flood risk assessment and the formulation of effective resource allocation strategies. Data-driven deep learning approaches have gained traction in urban emergency flood prediction, addressing the efficiency constraints of physical models. However, the spatial structure of rainfall, which has a profound influence on urban flooding, is often overlooked in many deep learning investigations. In this study, we introduce a novel deep learning model known as CRU-Net equipped with an attention mechanism to predict inundation depths in urban terrains based on spatiotemporal rainfall patterns. This method utilizes eight topographic parameters related to the height of urban waterlogging, combined with spatial rainfall data as inputs to the model. Comparative evaluations between the developed CRU-Net and two other deep learning models, U-Net and ResU-Net, reveal that CRU-Net adeptly interprets the spatiotemporal traits of rainfall and accurately estimates flood depths, emphasizing deep inundation and flood-vulnerable regions. The model demonstrates exceptional accuracy, evidenced by a root mean square error of 0.054 m and a Nash–Sutcliffe efficiency of 0.975. CRU-Net also accurately predicts over 80% of inundation locations with depths exceeding 0.3 m. Remarkably, CRU-Net delivers predictions for 3 million grids in 2.9 s, showcasing its efficiency.</p>","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"98 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.024","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image
View largeDownload slide
Abstract Image
View largeDownload slide
Close modal

Urban floods pose a significant threat to human communities, making its prediction essential for comprehensive flood risk assessment and the formulation of effective resource allocation strategies. Data-driven deep learning approaches have gained traction in urban emergency flood prediction, addressing the efficiency constraints of physical models. However, the spatial structure of rainfall, which has a profound influence on urban flooding, is often overlooked in many deep learning investigations. In this study, we introduce a novel deep learning model known as CRU-Net equipped with an attention mechanism to predict inundation depths in urban terrains based on spatiotemporal rainfall patterns. This method utilizes eight topographic parameters related to the height of urban waterlogging, combined with spatial rainfall data as inputs to the model. Comparative evaluations between the developed CRU-Net and two other deep learning models, U-Net and ResU-Net, reveal that CRU-Net adeptly interprets the spatiotemporal traits of rainfall and accurately estimates flood depths, emphasizing deep inundation and flood-vulnerable regions. The model demonstrates exceptional accuracy, evidenced by a root mean square error of 0.054 m and a Nash–Sutcliffe efficiency of 0.975. CRU-Net also accurately predicts over 80% of inundation locations with depths exceeding 0.3 m. Remarkably, CRU-Net delivers predictions for 3 million grids in 2.9 s, showcasing its efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推进城市洪水快速预测:具有不均匀降雨和关注机制的时空深度学习方法
查看大尺寸下载幻灯片查看大尺寸下载幻灯片 关闭模态城市洪水对人类社区构成重大威胁,因此预测洪水对全面评估洪水风险和制定有效的资源分配策略至关重要。数据驱动的深度学习方法解决了物理模型的效率限制,在城市紧急洪水预测中获得了广泛关注。然而,对城市洪水有着深远影响的降雨空间结构在许多深度学习研究中往往被忽视。在本研究中,我们引入了一种名为 CRU-Net 的新型深度学习模型,该模型配备了注意力机制,可根据时空降雨模式预测城市地形的淹没深度。该方法利用与城市内涝高度相关的八个地形参数,结合空间降雨数据作为模型的输入。所开发的 CRU-Net 与其他两个深度学习模型(U-Net 和 ResU-Net)之间的比较评估显示,CRU-Net 能够很好地解释降雨的时空特征,并准确估计洪水深度,强调深度淹没和易受洪水影响的区域。该模型的均方根误差为 0.054 米,纳什-苏特克利夫效率为 0.975,证明了其卓越的准确性。CRU-Net 还能准确预测 80% 以上水深超过 0.3 米的淹没地点。值得注意的是,CRU-Net 能在 2.9 秒内对 300 万个网格进行预测,充分展示了其高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
A genetic algorithm's novel rainfall distribution method for optimized hydrological modeling at basin scales Accelerating regional-scale groundwater flow simulations with a hybrid deep neural network model incorporating mixed input types: A case study of the northeast Qatar aquifer Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism A parallel multi-objective optimization based on adaptive surrogate model for combined operation of multiple hydraulic facilities in water diversion project Long-term inflow forecast using meteorological data based on long short-term memory neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1