A genetic algorithm's novel rainfall distribution method for optimized hydrological modeling at basin scales

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2024-06-01 DOI:10.2166/hydro.2024.224
Charalampos Skoulikaris, Nikolaos Nagkoulis
{"title":"A genetic algorithm's novel rainfall distribution method for optimized hydrological modeling at basin scales","authors":"Charalampos Skoulikaris, Nikolaos Nagkoulis","doi":"10.2166/hydro.2024.224","DOIUrl":null,"url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.224/1/m_hydro-d-23-00224gf01.png?Expires=1722776541&amp;Signature=WUW83ZFchbelEpC~92sxSdnRMa9uT2LOf9eonalq81ChFe-N-j-Vqx-JFPu3xykBHFSaO67QRTHfWGOnXXxzOKJluLqPpyK0~F~RUa20tz~x7BvayLefVcuLsw8nIY~YgCUMzs-U1XcZZbq92bL7EEjluqvefzIOp-f4dFwHsBwYS89zE-QGkjkVF58vi8CXv5U6Aj7lmy-1GPTdBtBNp4~IU1yp5qctP5q4vaDmmVCGdV8YAEqSHCTYzn6JXYWmtmLywQjOtixtgtePULNM-IPmUr7RFhvYfO5rJMtiEUVvD7OYfy7EaRX~8uP2HnwmjgvViRI5xmThUkBioXfWXA__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00224gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.224/1/m_hydro-d-23-00224gf01.png?Expires=1722776541&amp;Signature=WUW83ZFchbelEpC~92sxSdnRMa9uT2LOf9eonalq81ChFe-N-j-Vqx-JFPu3xykBHFSaO67QRTHfWGOnXXxzOKJluLqPpyK0~F~RUa20tz~x7BvayLefVcuLsw8nIY~YgCUMzs-U1XcZZbq92bL7EEjluqvefzIOp-f4dFwHsBwYS89zE-QGkjkVF58vi8CXv5U6Aj7lmy-1GPTdBtBNp4~IU1yp5qctP5q4vaDmmVCGdV8YAEqSHCTYzn6JXYWmtmLywQjOtixtgtePULNM-IPmUr7RFhvYfO5rJMtiEUVvD7OYfy7EaRX~8uP2HnwmjgvViRI5xmThUkBioXfWXA__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.224/1/m_hydro-d-23-00224gf01.png?Expires=1722776541&amp;Signature=WUW83ZFchbelEpC~92sxSdnRMa9uT2LOf9eonalq81ChFe-N-j-Vqx-JFPu3xykBHFSaO67QRTHfWGOnXXxzOKJluLqPpyK0~F~RUa20tz~x7BvayLefVcuLsw8nIY~YgCUMzs-U1XcZZbq92bL7EEjluqvefzIOp-f4dFwHsBwYS89zE-QGkjkVF58vi8CXv5U6Aj7lmy-1GPTdBtBNp4~IU1yp5qctP5q4vaDmmVCGdV8YAEqSHCTYzn6JXYWmtmLywQjOtixtgtePULNM-IPmUr7RFhvYfO5rJMtiEUVvD7OYfy7EaRX~8uP2HnwmjgvViRI5xmThUkBioXfWXA__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00224gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.224/1/m_hydro-d-23-00224gf01.png?Expires=1722776541&amp;Signature=WUW83ZFchbelEpC~92sxSdnRMa9uT2LOf9eonalq81ChFe-N-j-Vqx-JFPu3xykBHFSaO67QRTHfWGOnXXxzOKJluLqPpyK0~F~RUa20tz~x7BvayLefVcuLsw8nIY~YgCUMzs-U1XcZZbq92bL7EEjluqvefzIOp-f4dFwHsBwYS89zE-QGkjkVF58vi8CXv5U6Aj7lmy-1GPTdBtBNp4~IU1yp5qctP5q4vaDmmVCGdV8YAEqSHCTYzn6JXYWmtmLywQjOtixtgtePULNM-IPmUr7RFhvYfO5rJMtiEUVvD7OYfy7EaRX~8uP2HnwmjgvViRI5xmThUkBioXfWXA__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Rainfall has a dominant role in rainfall-runoff models, with the rendering of these models depending on the data accuracy and on the way that rainfall is spatially allocated. The research proposes a methodological framework where a genetic algorithm (GA)-based method responsible for the spatial distribution of gauge observations at the basin scale is coupled with the HEC-HMS hydrological model to produce simulated discharges of high accuracy. The custom-developed GA is used to divide a 2D space, adhering to specific criteria, into polygonal geometries that represent gauge zones of influences, similar to the Thiessen polygon method concept. A collection of vectorial polygonal areas, equivalent in number to the employed monitoring stations, is produced with the areal weights to be used for distributing the rainfall across the case study basin and subsequently to force the hydrological simulations. The generated gauge weights are validated for a different temporal precipitation event. The final outputs expressed through a series of statistical measures, clearly demonstrate the effectiveness of the specific methodology (e.g. <em>R</em><sup>2</sup> and Nash–Sutcliffe are larger than 0.83 and 0.73). The methodology can foster accurate hydrological simulations, especially in cases where there is a limited number of rainfall stations and corresponding observations.</p>","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"55 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.224","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image
View largeDownload slide
Abstract Image
View largeDownload slide
Close modal

Rainfall has a dominant role in rainfall-runoff models, with the rendering of these models depending on the data accuracy and on the way that rainfall is spatially allocated. The research proposes a methodological framework where a genetic algorithm (GA)-based method responsible for the spatial distribution of gauge observations at the basin scale is coupled with the HEC-HMS hydrological model to produce simulated discharges of high accuracy. The custom-developed GA is used to divide a 2D space, adhering to specific criteria, into polygonal geometries that represent gauge zones of influences, similar to the Thiessen polygon method concept. A collection of vectorial polygonal areas, equivalent in number to the employed monitoring stations, is produced with the areal weights to be used for distributing the rainfall across the case study basin and subsequently to force the hydrological simulations. The generated gauge weights are validated for a different temporal precipitation event. The final outputs expressed through a series of statistical measures, clearly demonstrate the effectiveness of the specific methodology (e.g. R2 and Nash–Sutcliffe are larger than 0.83 and 0.73). The methodology can foster accurate hydrological simulations, especially in cases where there is a limited number of rainfall stations and corresponding observations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于流域尺度水文模型优化的遗传算法新型降雨分布方法
查看大尺寸下 载幻灯片查看大尺寸下 载幻灯片 关闭模态降雨在降雨-径流模型中起着主导作用,这些模型的效果取决于数据精度和降雨的空间分配方式。本研究提出了一种方法框架,即基于遗传算法(GA)的方法与 HEC-HMS 水文模型相结合,生成高精度的模拟排水量。定制开发的遗传算法用于按照特定标准将二维空间划分为多边形几何图形,这些几何图形代表测量影响区,与 Thiessen 多边形方法的概念类似。生成的矢量多边形区域集合在数量上等同于所采用的监测站,其区域权重将用于分配案例研究流域的降雨量,并随后强制进行水文模拟。生成的测站权重在不同时间的降水事件中得到验证。通过一系列统计指标得出的最终结果清楚地表明了特定方法的有效性(例如,R2 和 Nash-Sutcliffe 分别大于 0.83 和 0.73)。该方法可以促进精确的水文模拟,尤其是在雨量站和相应观测数据数量有限的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
A genetic algorithm's novel rainfall distribution method for optimized hydrological modeling at basin scales Accelerating regional-scale groundwater flow simulations with a hybrid deep neural network model incorporating mixed input types: A case study of the northeast Qatar aquifer Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism A parallel multi-objective optimization based on adaptive surrogate model for combined operation of multiple hydraulic facilities in water diversion project Long-term inflow forecast using meteorological data based on long short-term memory neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1